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Abstract—This paper reports the experimental results from a
novel visible light positioning (VLP) system. The developed VLP
is completely passive as it does not require the target to carry any
active device or tag and, at the same time, it does not require any
modification to the lighting infrastructure. The developed VLP
localizes a target based on measuring the change it creates in
the received signal strength (RSS) of the ambient light recorded
at an array of photodiodes embedded in the wall. Experimental
results from a prototype system show that a median error of 7.9
cm can be achieved.

Index Terms—Indoor localization, Indoor Positioning System
(IPS), Visible Light Positioning (VLP), Device Free Localization
(DFL), Passive VLP

I. INTRODUCTION

Indoor positioning has been a burgeoning area of research
over the past decade. In terms of outdoor positioning, GPS [1]
is the de facto solution, due to it being both ubiquitous and
free to use. However, it has limitations, especially in built
up areas or indoors [2]. The signal is negatively impacted
by multipath reflections and struggles to penetrate walls.
Furthermore, the offered accuracy of several metres [3] is not
good enough for indoor applications. For these reasons, other
methods have been proposed using infrared signals [4], RFID
[5], Bluetooth [6] and Wi-Fi [7], [8]. Whilst most of these
represent an improvement over GPS for indoor localization,
the majority of them still do not meet the desired levels of
accuracy, reliability or simplicity. With Light Emitting Diodes
(LEDs) steadily replacing traditional lighting sources, a new
method of positioning has come to the fore – Visible Light
Positioning (VLP). Visible light has the benefits of being far
less susceptible to multipath interference and flat fading due
to its vastly higher frequency than RF [9]. LED lighting can
also perform multiple roles – illumination, communication
and positioning. Active VLP has been well researched and
relies on a mobile object having a receiver containing either a
photodiode or image sensor [10]. There are several active VLP
methods that have been implemented on indoor testbeds, with
the main approaches being Received Signal Strength (RSS)
lateration [11]–[13], Angle of Arrival (AOA) angulation [14],
[15], and fingerprint matching [16].

Passive VLP allows for the detection of people and objects
without the need for the tracked object to have an attached

This research was supported by the Massey University Research Fund
(MURF) 2017-18 “Implementation of an Asset Tracking & Monitoring
System Leveraging Existing Wi-Fi & Lighting Infrastructure”

receiving device. It is highly desirable to be able to track
passively rather than relying on a wristband or other smart
device which must be consciously put on. There are several
existing works for passive VLP. In [17] the authors used co-
located LED luminaires and photodiodes to passively detect
humans. The light from the LED luminaires was multiplexed
using Time-Division Multiple Access (TDMA) to identify
the source of incoming light at each photodiode. In the
aforementioned paper, the data was primarily used to detect
whether a door was open or closed. The authors further
extended this work in [18] to also track human movement
and detect room occupancy. The authors were able to achieve
93.7% occupancy count accuracy and 0.89 m median error
positioning accuracy in a 45 m2 room. In [19], the floor is
inlaid with 324 photodiodes, with 5 LED luminaires placed
on the ceiling above. This setup is then used to detect the
position of a human’s body and limbs from the shadows cast
onto the floor. The authors were able to achieve a mean angular
accuracy of 10 degrees for the 5 main body joints. The work
was further extended in [20] using only 20 photodiodes, albeit
with a much larger number of LED panels on the ceiling. This
simplifies the infrastructure at the cost of slightly decreased
accuracy – 13.6 degrees mean angular error instead of 10.
Similarly, the authors in [21] also use a grid of photodiodes
embedded into the floor. LED luminaires on the roof cast
shadows from test subjects onto said photodiodes. However,
this paper reports results based on mostly simulation, with
the only experimental part being a single point to point LED
to photodiode link to gather parameters for the larger scale
simulation. In simulations, the authors were able to achieve
median error of 8cm in an 8m x 8m x 4m room with 4 LED
luminaires, and photodiodes uniformly spaced at 0.5m in the
floor. In [22], the authors use a passive VLP approach for
mobile device input using an LED and two photodiodes to
detect a user’s finger. The LED improves the reliability in the
presence of changing ambient light. The authors were able to
position a user’s finger in a 9x7 cm grid with 0.7 cm median
error. CeilingSee [23] uses reverse biased LED luminaires as
photodiodes for occupancy sensing. However, the authors did
not use the system for positioning of test subjects or objects
and therefore, do not have a position accuracy.

This paper, focuses on achieving accurate positioning of an
object in ambient light conditions without the need of any
modification to the existing lighting, unlike the majority of
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Fig. 1. Received power at each photodiode for three scenarios - empty test
bed, test subject at left hand side close to the wall with the photodiodes
affixed, and right hand side away from wall with photodiodes affixed. Corridor
environment

VLP solutions.

II. SYSTEM OVERVIEW

In a room, there are generally multiple light sources –
several interior lights and in many cases, windows as well.
In addition to this, walls are generally light coloured and,
therefore, cause a portion of the light to be reflected. A person
moving around a room produces several shadows of different
intensities to be projected onto the floor and walls. The main
shadows comes from blocking the direct path from the ambient
light sources. However, many other shadows are generated
because the reflected components from the light sources are
also blocked. These shadows can be detected by photodiodes
placed around a room and then used to locate objects. This
can be observed in Fig. 1. The blue bars are the RSS at seven
different photodiodes placed along a wall when the test area
is free from obstructions. The red and orange bars present a
case when a person is standing at the front left (close to the
wall) and the back right (further from the wall) respectively.
This causes RSS to drop compared to the empty room, with
there being a greater drop at photodiodes closer to the test
subject. For example, when the test subject is in the front left
position, the RSS drop is more significant in photodiodes 1
and 2 and there is very little drop in photodiodes 6 and 7.
When the person is at the back right, the opposite is true -
photodiodes 6 and 7 are affected to a much larger degree than
1 and 2.

The testbed makes use of seven ISL29023 [24] integrated
digital light sensors placed on a board (wall) at a height of
1.05 meters from the floor. The light sensors are comprised of
a photodiode, transimpedance amplifier, and analog-to-digital
converter (ADC) located on the same package. Each light
sensor is connected to a low-cost Wi-Fi microchip (ESP8266
[25]) as shown in Fig. 2. The ambient light manifests as DC
at the output of the transimpedance amplifier. The DC level is

Fig. 2. Photodiode receiver.

Fig. 3. Smart wall with the embedded photodiode receivers, open room
environment.

a measure of the RSS of the ambient light and is sampled by
the embedded ADC and is retrieved by the microcontroller
in the ESP8266. The latest 100 samples are stored in the
memory until they are retrieved over Wi-Fi. The data can then
be requested in 100 value packets from a laptop and saved to
the hard drive.

A 3.4m x 2.2m grid with 20cm squares was marked out
using masking tape and a laser straight edge.

Two experiments were performed, one with the photodiodes
along the wall facing into the room – henceforth known
as the open room environment (see Fig. 3). For the second
experiment, the photodiodes were positioned along the side of
the grid furthest from the wall, with the photodiodes pointing
back towards the wall – henceforth known as the corridor
environment (see Fig. 4). Immediately before and after each
test, the background ambient light measured and recorded.
This was then used to normalise the data at each photodiode
and verify the ambient light levels remained constant - a
factor which this work is reliant on. Changes in ambient light
would introduce extra uncertainty and consequently decreased
positioning accuracy. Each measurement consists of 100 RSS
readings over 10 seconds at each photodiode. This could
potentially be reduced (or the data sample rate increased) in
later works to hasten the data acquisition process.

Data were collected at each grid intersection for a total of
198 locations, with the data being split into two parts with



Fig. 4. Smart wall with the embedded photodiodes, corridor environment.

Fig. 5. Online vs offline data points.

half forming the offline fingerprint database, and the other
half, the online RSS measurements. The online and the offline
locations are shown in Fig. 5. The measured RSS values at
each photodiode are shown in Fig. 6. These plots show the
change in RSS with a test subject (180 cm in height) standing
at each individual point on the grid - combining both the online
and offline points. A very large dip can be seen on the top left
edge of each plot where the test subject stood immediately
in front of the photodiode causing a strong shadow. Taking
the RSS value from the same location on each plot gives
the fingerprint value for that position. Weighted K Nearest
Neighbours (WKNN) [26] was employed to classify the online
readings using the offline fingerprints. Euclidean distance was
used to measure the distance between the online reading and
each entry on the fingerprint database.

A. WKNN algorithm

Weighted K nearest neighbours is an extension of the K
nearest neighbours algorithm [27]. The algorithm takes a live
reading Rlive which is a vector of M RSS readings - one from

each photodiode. This is compared to the offline fingerprint
database R which stores a vector R for each point that has
been mapped. The Euclidean distance di between Rlive and
an entry in the database Ri,j is taken as follows:

di =

√√√√ M∑
j=1

(R2
i,j −R2

live) (1)

The K smallest distance entries in the database are taken
and used to estimate the weights for each of the K database
readings as:

Wk =
1

dk
(2)

These are then used to weight each of the locations before
they are combined. This is so that the database readings closest
to the live reading have a greater influence on the final position
estimation. The final position is found as follows:

x̃j =

∑K
k=1 Wj,k × xk∑K

k=1 Wj,k

(3)

ỹj =

∑K
k=1 Wj,k × yk∑K

k=1 Wj,k

(4)

Where [x̃j , ỹj ] is the estimated position, Wj,k are the
weights calculated in equation (2) and [xk, yk] is the associated
coordinate for that weight. The position error is then calculated
by finding the Euclidean distance between the estimated
location and the actual location where the live RSS values
were taken.

III. EXPERIMENTAL RESULTS

A K value of 3 was experimentally chosen for the WKNN
algorithm, as it provides a good balance between optimising
both the median and maximum error for both environments.
This can be clearly seen in Fig. 7.

TABLE I
POSITION ERROR FOR K = 3 FOR BOTH ENVIRONMENTS

Corridor Open room
Median error (cm) 7.9 12.3

Max error (cm) 97 357
Standard deviation (cm) 14.3 40.8

Table I shows the position errors for both the experiments.
In Fig. 8, the estimated positions for the corridor are plotted
in relation to their actual locations to show the spatial error
distribution. One can see that the errors are concentrated at
the boundaries of the testbed. In part, this is due to the
positions being further from the photodiodes and in part, due
to having less fingerprints around the position. Fig. 9 shows
the localization errors for the open room environment. As
expected from the Cumulative Distribution Function (CDF)
plot in Fig. 10, one can see that the position estimation is



Fig. 6. RSS fingerprints for each photodiode. Corridor environment.

Fig. 7. The impact of the value of K on both the median and maximum error
for both the environments (corridor and open room).

more accurate for the corridor environment. It is more accurate
due to the light reflecting off the white wall behind causing
more distinct shadows. The worst case errors in the open room
scenario are at the very edges of the testbed. In particular,
the two corners closest to the photodiode wall which are at
a very acute angle to the majority of the photodiodes and,
therefore, do not experience a discernible shadow. This can be
seen in Fig. 11 where the two corner RSS plots are compared
to the background RSS reading and also a position with low
error. The RSS readings at the two corner plots are both very
similar to the background readings. They are most different
at photodiode 1 for the left hand reading and photodiode 7
for the right hand reading as these are the least acute angles.

Fig. 8. Actual vs estimated positions in the corridor environment. Green
asterisks denote the photodiode positions, red crosses the actual positions, the
blue circles the estimated positions and the black lines the magnitude of the
error between the actual and estimated positions.

As the RSS readings are so close to the background readings,
small amounts of noise can cause erroneous identification of
neighbours leading to large errors in the position estimate.
This can be addressed by extending the row of the photodiodes
further along the wall.

IV. CONCLUSION

The authors believe that this is the first reported passive VLP
reported in the literature that uses only the ambient light. The
system is able to position an object with a median error of
7.9cm in a corridor environment. In an open room scenario,
this increases to 11.4 cm median error. Further work should



Fig. 9. Actual vs estimated positions in the open room environment. Green
asterisks denote the photodiode positions, red crosses the actual positions, the
blue circles the estimated positions and the black lines the magnitude of the
error between the actual and estimated positions.

Fig. 10. Localization precision as CDF of error in both environments.

expand the test to a full room scale. The experiments were
undertaken at night and, therefore changes in the level of
ambient light was not investigated. This is the area for future
investigations to quantify and potentially mitigate the impact
it may have. Modulated light could potentially be used from
LED ceiling luminaires to mitigate the effect of ambient light.
Currently the system has been tested for a single object at
a time and as such, further investigation is needed to detect
multiple objects. With fingerprint based systems, generating
the fingerprint database is a very time consuming process. In
the future, the authors will investigate how to model these data
and generate them from a few strategically selected calibration
points.

Fig. 11. The worst errors are found at (0, 200), (320, 200). This is compared
to a location with a much lower error at (160, 160) and the readings when
no test subject is present. Open room environment
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