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Abstract: Visible light positioning or VLP has been identified as a promising technique for accurate
indoor localization utilizing pre-existing lighting infrastructure. Robot navigation is one of the many
potential applications of VLP. Recent literature shows a small number of works on robots being
controlled by fusing location information acquired via VLP that uses a rolling shutter effect camera as
a receiver with other sensor data. This paper, in contrast, reports on the experimental performance of
a cartesian robot that was controlled solely by a VLP system using a cheap photodiode-based receiver
rigidly attached to the robot’s end-effector. The receiver’s position was computed using an inverse-
Lambertian function for ranging followed by multi-lateration. We developed two novel methods to
leverage the VLP as an online navigation system to control the robot. The position acquired from the
VLP was used by the algorithms to determine the direction the robot needed to move. The developed
algorithms guided the end-effector to move from a starting point to target/destination point(s) in a
discrete manner, determined by a pre-determined step size. Our experiments consisted of the robot
autonomously repeating straight line-, square- and butterfly-shaped paths multiple times. The results
show median errors of 27.16 mm and 26.05 mm and 90 percentile errors of 37.04 mm and 47.48 mm,
respectively, for the two methods.

Keywords: visible light positioning (VLP); online navigation system; cartesian robot; rolling shutter
effect (RSE) camera; spring relaxation (SR); CNC end-effector

1. Introduction

Robot navigation [1] is an active topic of research due to the growing demands in
sectors like retail services, manufacturing, logistic, healthcare, domestic services, and
warehouse management [2]. For many tasks, a mobile robot is required to follow a set path
or prescribed route from a start location to destination location or locations. For example, a
waiter robot has to go from the kitchen to the customers to deliver food. An autonomously
guided vehicle robot needs to traverse between various assembly stations to autonomously
deliver parts. Service robots operating in a hospital need navigation to transport food
and medication throughout the premises. Cleaning robots need sophisticated techniques
to navigate within their service area. The basic parameters of the robot’s movement
in reaching its destination include speed, positioning accuracy, the type of movement
trajectory (e.g., linear), etc. [3]. These are the essentially similar regardless of whether the
robot is mobile (e.g., an automated vacuum cleaner) or stationary (e.g., an industrial robotic
arm for assembling). These parameters need to be considered while developing a system
for controlling a robot.

Outdoor navigation can utilize Global Positioning System (GPS) for robust real-time
applications. However, GPS does not function reliably inside buildings due to the degrada-
tion of the satellite signals caused by obstructions. Popular methods for robot navigation
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in an indoor environment include simultaneous localization and mapping (SLAM), and
utilizing the information acquired by its onboard sensors like an odometry sensor, inertia
measurement unit (IMU), ultrasonic sensor, electronic compass, light detection and ranging
(LiDAR) sensor, and camera [4]. While such techniques are quite mature, robot navigation
based on indoor positioning systems (IPSs) has started to get the attention of researchers
in recent times [5]. This is driven by the rapid advancement in indoor localization [6]
that, apart from robot navigation, can potentially be used for asset tracking, and smart
guidance in large facilities like airports. Proprioceptive sensors (IMU, odometry) are subject
to cumulative errors [1]. Kidnapped robot or locomotion failure can also create issues as
the current location information is lost [7]. Therefore, a global localization-based solution
using IPS also offers some inherent advantages by not being susceptible to these issues.

The most common IPSs are based on radio frequency technologies like Wi-Fi [8],
BLE [9], ultra-wide band (UWB) [10], and radio frequency identification (RFID) [11].
However, their relatively low localization accuracy means that they are more suited as
a secondary source of information for sensor fusion-based navigation [12]. In contrast
technologies which offer centimeter-range indoor positioning accuracy such as acoustic
signals and visible light signals hold more promise for robotic navigation. Visible light
positioning (VLP) has the comparative advantage of being able to leverage pre-existing
lighting infrastructure. Light-emitting diodes (LEDs), which are energy efficient, long last-
ing, and emit low heat, are rapidly becoming the preferred technology for modern indoor
lighting infrastructure. The abundance of pre-installed LED lightings presents opportunity
to simultaneously use them for visible light communication (VLC) [13] and VLP.

2. Related Work

In VLP systems, LED luminaires are used as the transmitting beacons with either
a photo diode (PD) or camera as the common receiver sensor attached to the tracked
object. Both sensors come with inherent advantages and disadvantages. While cameras
may allow for more sophisticated communication schemes [14], PD-based receivers are
considerably cheaper and energy efficient [15], and incur less computational cost [16].
Received signal strength (RSS) is the most widely utilized signal characteristic for a PD-
based VLP due to simplicity and convenience [17]. VLP that utilizes RSS can either be
model- or fingerprinting-based [18]. Fingerprinting-based methods can be time- and labor-
consuming compared to the model-based ones. Considering all these points, the VLP
system used for this work employed a PD-based receiver that utilizes RSS as the signal
characteristic and localizes using a model-based technique. A literature review shows
many localization works based on a PD-based receiver utilizing RSS (for example, see the
recent survey paper by Rahman et al. [19] on VLP) achieving centimeter-level accuracy.
However, there is no reported work that uses such a VLP system as the singular tool for
controlling robots in real time.

A survey of recent literature on VLP-based indoor robot navigation yields only a
handful of papers. These works utilize a rolling shutter effect (RSE) camera as the light
sensing device (please see [20–22] for examples of RSE-based VLP systems). Though the
method uses more computer computation time and a complex algorithm because of the
involvement of image processing and classification algorithm, the availability of ubiquitous
CMOS image sensor cameras in most smartphones has made them the preferred choice
among researchers.

Rátosi and Simon [23] employed an RSE camera installed on a mobile robot to deter-
mine its pose from the signal received from modulated LED luminaires. While the system
is shown to be able to track the moving robot in real time in a 6 m × 6 m room within a low
centimeter range, the VLP system is not used for the navigation. The process of decoding
LED-ID information from the captured images using an RSE camera can be slow due to
the computational latency. Therefore, Li et al. [24] proposed using convolutional neural
network (CNN) to increase the speed of identifying the anchor node ID from the captured
image, especially with motion blur caused by the fast movement of a robot.
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Hua et al. [25] proposed the fusion of a PD- and camera-based system using a version
of the Kalman filter. The system is shown to be robust and has the ability to perform real-
time positioning. However, the system was not used to control or navigate a robot. Amsters
et al. [16] demonstrated the capability of a PD-based VLP that utilizes only unmodulated
light. While their system has the potential to estimate the pose of a mobile robot, the
experimental results do not show real-time position estimation. They also do not control
or navigate the robot using VLP. Zhuang et al. [26] reported on a PD-based VLP system
that may be used for the localization of a mobile robot. However, the article only reports
localization accuracy; the VLP system is not used to control the movement of the robot.

Guang et al. [5] proposed indoor robot localization based on a VLP system that
utilized an RSE camera installed on Turtlebot 3 running a robot operating system (ROS).
They presented an extension [27] of this work by introducing a loosely coupled multi-sensor
fusion with LiDAR- based SLAM and odometry. Another improvement [28] of the work
involves the fusion of VLP and IMU to improve the system’s robustness with the ability
to handle luminaire shortage/outage. A similar work on the fusion of VLP and IMU to
address luminaire shortage/outage issues for an RSE-based receiver can be found in [29].
It should be noted that only one of the articles [28] develops a method for controlling the
robot, whereas the other two articles [27,29] focus mainly on the localization aspect.

Therefore, a clear gap in the state of the art can be seen. There is a noticeable lack of
works that utilize VLP for controlling a robot. Recent literature shows only a small number
of works on robots being controlled by fusing location information acquired via VLP that
uses an RSE camera as a receiver with other sensor data. There is no reported work that
has used only PD-based VLP to control a robot. This is the motivation of the work being
presented in this article.

3. Contribution

As far as the authors are aware of, this is the first reported work that utilizes only a PD-
based VLP system to control the movement of a robot. In this work, two novel algorithms
are proposed and implemented to control the movement of a cartesian robot, constructed
in the form of a 2D Computer Numerical Control (CNC) machine, solely by a VLP system
in real time. This also allowed for objectively evaluating the efficacy of a PD-based VLP
system for controlling a robot. Based on the experimental results collected while the robot
is traversing multiple path patterns, both algorithms show promising accuracy.

This is how the rest of the article is organized. Section 4 describes the experimental
setup and bespoke hardware. The visible light positioning technique and calibration of the
VLP system are discussed in Section 5. The algorithms for controlling the movement of
the robot are developed in Section 6. Experimental results are presented and discussed in
Section 7. Finally, Section 8 concludes the paper and identifies some potential work that
can be carried out to extend the research.

4. Experiment Setup

The key equipment of the experimental setup is a purpose-built 2D CNC machine (see
Figure 1). The VLP photodiode receiver is mounted on the end-effector. The CNC machine
performs three important tasks:

• It acts as the online robotic platform where the end-effector is driven by the VLP system;
• The encoders of the CNC measure the X Y linear movement at the rate of 1000 mm

per minute;
• During the online phase, the CNC also records the exact locations of the receiver

(end-effector). The location information is not used by the VLP system to drive the
CNC, but it is used as the ground truth so that the localization accuracy or error
statistics can be computed;

• During the offline phase, the CNC is used to accurately position the VLP receiver at
29 pre-determined locations to collect RSS data for calibrating the Optical Propagation
Model of the VLP system.
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Figure 1. VLP system test rig.

The end-effector’s minimum step size is 0.1 mm, achieved through lead screw ac-
tuation and Nema 23 stepper motors. An OpenBuilds BlackBox Motion Control System
(MCS) with Grbl firmware controls the stepper motors. The host PC sends commands to
the BlackBox MCS over a USB, with desired positions converted into GCODE commands
via a Python program. These desired positions were computed by the VLP.

The VLP system consists of four transmitters constructed with LED luminaires which
are commercially available and can be bought easily off the shelf. These luminaires are
placed at a 1050 mm height above the CNC at known x–y locations: TX1 (0, 0), TX2 (0, 780),
TX3 (760, 780), and TX4 (760, 0) (see Figure 1).

For the experiments conducted, an unmodulated sine wave of frequencies of 2 kHz,
2.6 kHz, 3.2 kHz, and 4.4 kHz were inserted by a modulator driver circuit powered by a
30 V power supply (shown in Figure 2). The input of the modulator circuit is connected to
a function generator which supplies the required sine wave. Each function generator has
two signal generation channels. Altogether, two function generators are sufficient for this
experiment (as seen in Figure 1).

Underneath, the PD-based VLP receiver was mounted on the end-effector of the CNC.
Together they form the robot that is controlled by utilizing the location estimated with
respect to the fixed luminaires. On the receiver board, the photodiode sensor converted the
optical signal to an electrical signal which was then amplified through a transimpedance
amplifier before being processed by an onboard analog to digital convertor (ADC). More
details of the receiver board can be found in [30]. The sensor board receives and decodes
the identities of these four lights using a Python program in the PC. After that, the data are
transmitted out serially via USB to PC for Fast Fourier Transform (FFT) processing. The
function of the FFT is to demultiplex and measure the magnitude of the four sinewaves
present in the received signal [30]. The magnitude squares constitute the RSS set at each
location. Please refer to Figure 3 for more details of the operation of the VLP system.
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Figure 3. Key concept of the VLP system. RSS is extracted from the received signal using FFT. A
representative RSS from four visible luminaires is shown at the receiver at a particular location. The
measured RSS is used for model calibration during the offline stage and for ranging and localization
during the live stage.

5. Localization Using VLP

During the offline stage, the RSS–distance relationship is found by calibrating the
Lambertian propagation model. RSS data are collected at a set number of pre-determined
locations for the parameter calibration. During the online phase, the live RSS readings are
used to find the distance of the target device (the receiver on the end-effector) from each
transmitter by “inverting” this calibrated propagation model. Subsequently, the receiver’s
position is estimated via lateration.

5.1. Offline Calibration of VLP

For this research, the receiver/target plane and luminaire/transmitter plane are kept
horizontal with respect to one another. This allows for the simplification of the Lambertian
propagation model [18]. Please refer to the discussion in Section 8 on how this limitation
can be addressed in the future.

Under this assumption of a parallel arrangement, the received power, Pri , or the RSS
at a distance di from the ith luminaire (Figure 4) within the field of view of the luminaire
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can be simplified from the Lambertian propagation model following the process outlined
in [18].

Pri = Pri,0

(
di,0

di

)mi+3
(1)
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Here, mi is the Lambertian order and Pri,0 is the RSS at a reference location at a distance
di,0 from the target. Equation (1) can be rearranged so that

mi =

 log
(

Pri
Pri,0

)
log

(
di,0
di

)
− 3 (2)

Figure 5 shows the position of the 29 offline locations where the RSS values were
collected to estimate mi for calibrating the RSS–distance relationship. As suggested by [31],
the reference location is chosen directly underneath the corresponding luminaire. The
Lambertian order is estimated at the rest of the 28 locations using Equation (2), and then
averaged over these 28 values. These offline locations are carefully chosen so that all
regions of the Lambertian propagation models for each luminaire are captured [32]. Table 1
shows the estimated Lambertian order and Figure 6 shows the measured RSS values and
the calibrated RSS–distance Lambertian curves of the four luminaires.

Table 1. Estimated Lambertian order of the luminaires.

Luminaire Lambertian Order (mi)

1 4.60

2 3.98

3 3.20

4 3.58
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5.2. Online Localization Using VLP

Once the RSS–distance model is calibrated for each luminaire, Equation (1) can be
rearranged for ranging (i.e., to compute the distance of the target from a luminaire) so that

di = di,0

(Pri,0

Pri

)1/(mi+3)

, (3)

The horizontal distance of the target from the ith luminaire, dxyi (please see Figure 4)
is computed as

dxyi =
√

d2
i − h2 (4)

6. Online Navigation

We developed two algorithms that can guide the end-effector to move from a starting
point to the target/destination point(s). Both algorithms drive and make the end-effector
move in a discrete manner, determined by the step size.

At each iteration of the algorithm, (1) visible light signal is captured by the VLP
receiver (for 500 ms) and sent to the PC for extraction of RSS, (2) the distance of the end-
effector from each luminaire is determined (as per the procedure discussed in the previous
section), and (3) the end-effector is instructed to move by a step size toward a direction
as determined by the algorithm or to remain stationary if the destination is reached. To
maneuver the CNC machine, a GCODE set is needed to be sent to the OpenBuilds BlackBox
motion control driver. The main program which is written in Python works out the x and y
direction step movement from the algorithm and generates the equivalent steps in GCODE.
The Black box motion control driver then processes the given GCODE and commands the
movement of the stepper motors connected to the CNC machine.

6.1. Algorithm 1

The flowchart in Figure 7 shows the algorithm. The robot, if required, moves at a step
size of T. However, before any movement takes place,
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(i) The robot’s current distance from each luminaire’s position is determined using
live VLP reading following the process outlined in Section 5.2. Once the horizontal
distance of the target from all four luminaires is found, the location of the target on
the xy plane is estimated using multi-lateration [24].

(ii) The direct distance between the current position and the final destination position
(refer to Figure 8), ∆xy, is calculated. ∆xy is based on the difference in x distance, ∆x,

and the difference in y distance, which is ∆y, so that ∆xy =
√

∆x2 + ∆y2.
(iii) If ∆xy ≤ T, the robot is considered to have reached the target, otherwise (i.e., if

∆xy > T) the robot receiver has not reached the destination yet and moves to a
new position by moving xs and ys in the x and the y directions, respectively. Here
xs =

∆x
∆xy × T and ys =

∆y
∆xy × T. As discussed previously, T is the step size (which is

20 mm for our experiments). It should be noted that

1. if xs = +ve, the robot moves to the right;
2. if xs = −ve, the robot moves to the left;
3. if ys = +ve, the robot moves up;
4. if ys = −ve, the robot moves down.

Once arriving at the new position, steps (i)–(iii) are reiterated until the robot arrives at
its destination.
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6.2. Algorithm 2

This algorithm is based on the spring relaxation [30] or artificial potential field [33]
techniques. In this section, we explain the algorithm using the concept of spring relaxation
which uses fictitious springs and Hooke’s law to guide the robot to its destination/s.
Figure 9 illustrates the concept of spring relaxation.

The location of the luminaires is the anchor to which the one end of each fictitious
spring is connected. The other ends are connected to the robot. The distance between
the target destination and each anchor is the natural length of each corresponding spring.
Therefore, when the robot is at its destination, all the springs are relaxed (neither com-
pressed nor stretched) and no force is acting on any of them. The goal of the algorithm is to
move the robot to a position where the net force acting on the springs is zero (or below a
certain threshold). Figure 10 shows the flowchart of the algorithm.
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(i) Compute the natural length, ln,i (i = 1 to 4 for our experimental setup), of the four
fictitious springs of the sensor device at the target position.

(ii) Take an RSS reading at the current position, xi, yi. Next, calculate the distance of
the robot from each luminaire using the ranging process described in Section 5.2
Equations (3) and (4). Each of these distances represents the current length of each
spring, li (i = 1 to 4 for our experimental setup).

(iii) If the current location is not the destination, the springs are not in an equilibrium state
(either compressed or stretched). A compressed spring experiences a push away from
the anchor, whereas a stretched spring experiences a pull toward the anchor. The
individual force, Fi, exerted by each spring, is estimated as Fi = |ln,i − li|ejθli , where
|ln − li| is the magnitude of the force and θli is the direction of the corresponding force.

(iv) Compute the net force acting on the robot as Fnet = ∑ Fi. Note that Fnet =
∣∣Fnet

∣∣ejθnet ,
where

∣∣Fnet
∣∣ is the magnitude of the net force and θnet is the direction of the net force.

If the net force is smaller than or equal to a threshold (
∣∣Fnet

∣∣ ≤ TH), the robot is at
the target. If not (i.e.,

∣∣Fnet
∣∣ > TH), the robot moves toward the direction of the net

force at the step size T. Steps (i)–(iv) are repeated and the robot moves until it reaches
the destination.

Figure 11 shows the tasks completed by the PC to perform the navigation of the
end-effector from the starting point to the next location.
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Figure 11. The tasks completed by the PC to control the movement of the CNC end-effector while
guided by one of the two algorithms running on live RSS data. Steps 3 to 8 are iterated until the
end-effector reaches the destination (when the loop ends after step 6).

7. Experimental Results

Figures 12–14 show how the CNC end-effector traverses through various paths. Each
path is repeated five times. The actual location of the end-effector can be determined to
an accuracy of 0.1 mm since the CNC tracks and records its position. Please note that this
information is only used as the ground truth and is not used to control the end-effector
which is solely driven by one of the algorithms based on the acquired RSS. As can be seen,
VLP-driven algorithms can control the robot reasonably accurately (accuracy statistics are
discussed later). However, it is also clear that for all patterns, the robot does deviate from
the ideal straight-line path. This is because the VLP-based position estimate using RSS
data has some error. Due to this and the discrete nature of the robot’s movement (step
size of 20 mm), it does not reach the “target” points precisely. For every pattern, each
path traversed is also slightly different regardless of the algorithm utilized. Therefore, the
robot and the VLP-based control system, in its current state, does not have the precision or
repeatability to be used for applications like assembly of electronic devices [34].
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Figure 13. “Square Path” travelled by the robot. The robot is moving from point A (100, 100) to point
B (600, 100) to point C (600, 600) to point D (100, 600) to point A. The diagrams ((a,b) for Algorithms 1
and 2, respectively) show five consecutive iterations of the path.
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Figure 14. “Butterfly Path” travelled by the robot. The robot is moving from point A (100, 100) to
point C (600, 600); then point C to point D (100, 600); then point D to B (600, 100) and then point B to
A. The diagrams ((a,b) for Algorithms 1 and 2, respectively) show five iterations of the path.
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Figure 15 shows the cumulative distribution function (CDF) of the errors for each path.
The error is computed as the amount of the deviation of the robot’s locations from an ideal
straight line. Figure 16 shows the CDF of the errors in reaching the target (measured as the
difference between the destination point and where the robot stopped) for all the paths.
The median and 90-percentile errors are shown in Table 2. It should be noted that the errors
in reaching the target can be reduced by lowering the step size (e.g., 27.16 mm to 15.23 mm
for Alg1 when the step size is changed from 20 mm to 5 mm). But that comes at the cost of
higher computational cost and increased time.
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Table 2. Accuracy statistics for both algorithms for various scenarios.

Scenario
Median Error (mm) 90-Percentile Error (mm)

Algorithm 1 Algorithm 2 Algorithm 1 Algorithm 2

Line Path 8.02 5.86 16.34 12.71

Square Path 15.15 15.51 30.99 37.59

Butterfly Path 16.81 11.1 28.48 25.19

Destination Points 27.16 26.05 37.04 47.48

8. Conclusions and Future Works

This work presented the control of a cartesian robot, a 2D CNC machine, capable
of precise positioning along the X and Y axes using only a PD-based VLP system. Two
algorithms were developed to control the position of the robot in real time. Both algorithms
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show promising accuracy. Algorithm 1 performed better for the “square path”, achieving a
15.15 mm median localization error. Algorithm 2 performed better for the “line path” and
the “butterfly path”, achieving median localization errors of 5.86 mm and 11.1 mm, respec-
tively. Given the accurate performance of the system, further investigation is warranted.
Also, further investigation needs to be carried out before an algorithm can be conclusively
recommended. There are several other limitations that can be addressed in the future.

The locations of the luminaires of the VLP have not been optimized. Future works can
explore the optimization of the layout of the VLP system. However, it should be noted that
as part of real-world implementation, the location of the luminaire may be dictated by the
need for illumination.

The Lambertian model was simplified under the assumption that the PD and the
luminaires are parallel. If the receiver tilts, the localization estimate is affected. However,
there are models [35] that address this issue and can thus be adopted. A simple gimbal can
also ensure that the receiver maintains its orientation.

Pose comprises of location and orientation. For this work, the location was determined
via VLP. The orientation was determined via a CNC. Therefore, developing a new receiver
capable of VLP-based orientation estimation will enable more sophisticated control strate-
gies. Bernades et al. [36] proposed a multi-PD based system for estimating the orientation
of the receiver for an infrared (IR)-based positioning system. A similar approach can be
applied for estimating the complete pose (both location and orientation) of the receiver.
Incorporating orientation information into the algorithm and conducting new benchmark-
ing experiments will open new avenues for investigation. Obstacle avoidance and path
planning can also be investigated in the future. But this will require utilizing other sensors
alongside PD.
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