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A B S T R A C T

A smartphone with both colour and time of flight depth cameras is used for automated grape yield estimation of
Chardonnay grapes. A new technique is developed to automatically identify grape berries in the smartphone’s
depth maps. This utilises the distortion peaks in the depth map caused by diffused scattering of the light
within each grape berry. This technique is then extended to allow unsupervised training of a YOLOv7 model
for the detection of grape berries in the smartphone’s colour images. A correlation coefficient (𝑅2) of 0.946 was
achieved when comparing the count of grape berries observed in RGB images to those accurately identified
by YOLO. Additionally, an average precision score of 0.970 was attained. Two techniques are then presented
to automatically estimate the size of the grape berries and generate 3D models of grape bunches using both
colour and depth information.
1. Introduction

Accurate grape yield estimation is crucial for wine growers since
it enables them to effectively plan, organise, and take necessary ac-
tions, such as pruning and thinning, to optimise the quality of the
wine they produce. Traditionally, yield estimation has been conducted
through manual techniques such as visual observation or by cutting
and weighing samples, which can be subjective, destructive, and time-
consuming. Moreover, manual methods can result in undersampling
of the vineyard, leading to potential errors. As a result, researchers
are exploring automated yield estimation methods, mainly utilising
computer vision techniques (Barriguinha et al., 2021; Laurent et al.,
2021; Moreno and Andújar, 2023).

Machine learning techniques have been used for detecting grape
bunches in RGB (Red Green Blue) images. This has included convo-
lutional neural networks (Santos et al., 2020) and different YOLO (You
Only Look Once) models (Li et al., 2021; Zhao et al., 2022; Liu et al.,
2023; Shen et al., 2023). However, for accurate yield volume estima-
tions, it is desirable to count the number of berries within bunches and
estimate the size of each berry.

Several studies have detected individual grape berries in RGB im-
ages using spectral reflectance peaks in the images obtained using
artificial lighting of the grapes in controlled field or lab conditions using
smartphones (Grossêtete et al., 2011; Grossetete et al., 2012; Aquino
et al., 2018) and camera systems (Font et al., 2014; Mirbod et al.,
2016). Machine learning has also been used to detect individual grape
berries in RGB images. Coviello et al. (2020) used dilated convolutional
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neural networks to count grapes in smartphone images. Miao et al.
(2021) used YOLOv3 to detect regions of interest around individual
grapes. Additionally, a YOLO model for detecting individual grape
berries can be downloaded from Ref. Roboflow Universe (2021). How-
ever, the training of these YOLO models will have been performed using
manual labelling, which can be very time-consuming. Also, it would
appear likely that this training would need to be repeated for different
grape cultivar varieties.

For yield estimation, it is desirable to estimate the size of the
individual berries within a bunch for accurate volume estimation. This
is particularly the case for grape varieties that have a range of sizes
within a bunch. Several studies have estimated the size of grapes
and generated 3D models of grape bunches using Hough transforms
to fit circles to grapes captured in camera and smartphone RGB im-
ages (Ang et al., 2018; Schmidtke, 2018; Liu et al., 2020b,a). These
generally used backing boards to make the grapes more distinctive
from the background and prevent circles from being detected in the
background. Mirbod et al. (2016) used spectral reflectance peaks to first
detect the location of each grape berry and then used circle detection in
this region to estimate the size of grapes in images. Miao et al. (2021)
also used a two-step process where a region of interest was identified
around grape berries using a YOLOv3 model and then edge detection
and ellipse fitting were used to estimate berry area in RGB images.

The size of the grape berries in an RGB image changes depending
on the distance of the grapes from the camera due to perspective
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projection. One technique used to estimate the physical size of a grape
berry from an RGB image is to place an object of known size next to the
grapes. The size of an individual grape berry can then be obtained by
comparing the size of the berry with the size of the reference object
in the RGB image. Ang et al. (Ang et al., 2018; Schmidtke, 2018;
National Wine and Grape Industry Centre, 2019) used a disk of known
dimensions placed among the grapes or a checkerboard held next to
the grapes to estimate the physical size of the grapes in a smartphone’s
or regular camera’s images. Liu et al. (Liu et al., 2020b,a) also used
a checkerboard image for this purpose. This allowed them to model
the 3D structure of a grape bunch from 2D images. This process was
extended by Xi et al. (Xin et al., 2020; Xin and Whitty, 2022) to include
constraint-based reconstructed grammars to ‘‘grow’’ the full 3D grape
bunch structure from a single view 2D image.

The distance that a camera is from a checkerboard can be mea-
sured using the camera’s intrinsic calibration parameters, which can be
obtained using camera calibration software. This technique may have
been used in the above works that used checkerboards.

It is desirable, however, not to have to use a reference object for
estimating the size of grape berries for yield estimation. The physical
size of grape berries can be estimated from their sizes in an RGB image
if one knows the distance of the camera from the grapes when the
image was taken, and one knows the camera’s calibration intrinsic
parameters. Ivorra et al. (2015) were able to estimate the size of
grapes from RGB images without the need for a calibration object.
They achieved this by measuring the distance that the camera was
from the grapes using a stereo-depth camera. They used this distance
combined with the size of grapes in the stereo camera’s raw RGB images
to estimate the physical size of grape berries. However, these results
were obtained in controlled lab environments where the lighting, back-
ground, and camera position were carefully regulated, and manual
refinement was required.

Grape size estimation and 3D modelling of grape bunches have
also been performed using high-resolution 3D scans of grapes. This has
included the use of photogrammetry. However, this involves a high
computational load and can take significant time to process (Rose et al.,
2016). Stereo reconstruction has also been used to generate 3D models
of grape bunches (Herrero-Huerta et al., 2015). There has also been
work using commercial high-resolution 3D scanners to generate 3D
models of grapes in lab environments (Schöler and Steinhage, 2015;
Mack et al., 2018). However, these are expensive and do not seem
suitable for practical use by farmers in the field.

There have been several studies that have used low-cost depth
cameras to obtain 3D scans of grapes obtained using RGB-D (Red Green
Blue - Depth) cameras for grape yield estimation. Marinello (Marinello
et al., 2016) and Hacking (Hacking et al., 2020; Hacking, 2020) used
the Microsoft Kinect V1 depth camera for yield estimation studies of
grapes. This operates using infrared structured light, which did not
work well in sunlight conditions due to the saturation of the projected
infrared (IR) pattern. Kurtser et al. (Kurtser et al., 2020a,b) used
an Intel RealSense D435 RGB-D camera for 3D scanning of grapes,
which uses active stereo. These works did not measure individual berry
information. This is likely due to the relatively low resolutions of the
RGB-D cameras used.

Parr et al. (2022) compared the performance of several low-cost
depth cameras for imaging grapes. It was shown that the ToF (Kinect
V2 and Kinect Azure) and LiDAR (Intel RealSense L515) depth cameras
produced distortions in the 3D scans of individual grapes in the form of
peaks centred on each grape location due to diffused scattering within
the grapes. It was suggested that these distortions could be exploited
to make the detection of grapes in ToF depth scans easier.

Previous research has employed smartphones to investigate grape
yield estimation (Tardaguila et al., 2021; Liu et al., 2020a,b; Grossêtete
et al., 2011; Schmidtke, 2018; Aquino et al., 2018). An advantage of
employing a smartphone in this context is that the majority of indi-
2

viduals already own one, thereby obviating the necessity for growers d
to invest in additional equipment. Many modern smartphones have
built-in depth cameras in addition to RGB cameras. For example, the
Samsung Galaxy Note 10+, Samsung Galaxy S20 Ultra, Huawei P30
Pro, etc. have built-in Time of Flight (ToF) cameras and the iPhone 12,
13 and 14 Pro and Pro Max models have built-in LiDARs. We are not
aware of any previous works that have used the built-in depth cameras
of a smartphone for grape yield estimation applications.

In this study, we utilise a Samsung Note 10+ smartphone to capture
RGB images and ToF depth maps of Chardonnay grapes in field and lab
environments. Grape detection is performed automatically by identi-
fying distortion peaks in the ToF depth maps resulting from diffused
light scattering within the grapes. We further train an unsupervised
YOLOv7 model to detect the precise location of grape berries in RGB
images, leveraging the initial grape identification from the depth maps.
Additionally, we develop techniques to estimate the size of grape
berries and generate 3D models of grape bunches.

This article has the following contributions.

• We introduce a novel technique for the automatic detection of
grape berry locations in 3D based on the peaks observed in
the ToF depth maps captured by the smartphone. Building upon
this technique, we extend it to enable unsupervised training of
a YOLOv7 model for grape berry identification. To the best of
our knowledge, this is the first instance of unsupervised training
of a YOLO model specifically for grape detection, and we are
not aware of any previous work that has employed a similar
approach.

• The physical size of grape berries can be estimated from their
size in the smartphone’s RGB images using the distances from
the camera to the grape berries that are automatically measured
by the smartphone’s depth camera. This removes the need for
placing a calibration object next to the grapes, as has been done in
previous work related to estimating berry size from RGB images
captured in the field.

• A novel iterative modelling technique is introduced for estimating
the sizes of grape berries based on their detected 3D positions,
eliminating the need to estimate berry sizes from the RGB images.
This approach offers an alternative method that does not rely on
analysing the RGB images to determine the berry sizes.

The remainder of the paper is organised as follows. Section 2 out-
lines the data collection methodology and processing used to generate
RGB-D point clouds of grapes. The technique used to detect individual
grapes from depth scans is described in Section 3. In Section 4, a
technique used to train a YOLO model in an unsupervised manner is
outlined. This model is then used to detect grape berries in the RGB
images. The methods used to estimate the size of grape berries and
perform 3D modelling of grape bunches are then presented in Section 5.
Finally, the conclusion is presented in Section 6.

2. Methodology

2.1. Data collection

Field measurements were made of Chardonnay grapes at the Villa
Maria Estate in Auckland, New Zealand. These were performed about
two weeks before harvest (late February). A Samsung Note 10+ smart-
hone was used to perform measurements on the grapes. This smart-
hone contains an RGB camera and a Time of Flight (ToF) depth
amera. For each depth image, it also generates a confidence map,
hich provides an indication of the accuracy and validity of each point

n the depth map.
At the time, there was no app available to capture depth map

mages from this camera. Therefore, a custom Android application was
eveloped for this purpose. For each capture event, the application
utomatically saved to file a 4032 × 3024 RGB image, a 640 × 480

epth map, and a time synchronised 640 × 480 confidence map.
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Fig. 1. Example images of the (a) RGB, (b) depth and (c) confidence maps captured by the Samsung Note 10+ of grapes in the field.
Fig. 2. Diagram of the experimental setup where a turntable was used to capture
images of a grape bunch using the smartphone from a range of angles.

Additionally, a text file was also saved that contained the smartphone’s
GPS location and a reading from the smartphone’s accelerometer taken
at the time of capture.

Fig. 1 provides an example of the RGB, depth, and depth confidence
maps captured using this app for a grape bunch. (This grape bunch data
will be used in most examples presented in this work for consistency.)
The camera was able to capture depth maps in direct sunlight. No
direct effort was made to take captures at any predetermined distance
from the graph cluster. The only restriction was that each grape cluster
should ideally fill the camera’s frame. In total, 400 sets of images were
captured of unique grape clusters throughout the vineyard.

In order to build a YOLOv7 machine-learning model to identify
grapes, a large number of scans of grapes were needed. To achieve this,
34 representative grape bunches were harvested from the vines and
taken back to the lab. In turn, each grape bunch was suspended from
a computer-controlled rotation table located 200 mm from the optical
centre of the stationary Samsung Note 10+, see Fig. 2. This distance was
chosen to ensure that all grape bunches would fit within the camera’s
frame while being as close as possible. This methodology imitates our
typical use of the phone’s cameras when capturing images of bunches
located on the vine.

The grape bunches were rotated through 360◦ and the Samsung
Note 10+ was used to capture an RGB image and depth and confidence
maps at 10◦ degree increments. Angles were not included where the
structure of the rotation platform obscured the grape cluster. This
resulted in a total of 1062 images of 34 grape bunches taken at a range
of angles. Refer to Fig. 3 for examples of scans captured using this
3

technique. Additionally, 120 scans were taken from a range of angles
in the lab of a potted grapevine, absent of grapes.

2.2. Camera calibration

The Note 10+ cameras produced an RGB image and depth and
confidence maps. In order to generate 3D-coloured depth point clouds
(RGB-D) from these, the calibration parameters of the smartphone’s
cameras needed to be known. The smartphone’s API did have calibra-
tion parameters stored. However, slight errors were found when using
these to align the colour and depth maps when calculating the RGB-D
point cloud. Therefore, a series of calibration colour and depth images
were taken from a range of angles of a checkerboard pattern that was
glued onto a sheet of acrylic. These measurements were made at similar
distances from which the grape measurements were made. The black
ink used to print the checkerboard pattern absorbed the infrared light
emitted by the ToF camera meaning it showed up as voids (black) on
the depth map. This meant that the depth map images captured of the
checkerboard could be used with camera calibration software.

The checkerboard images captured by the depth and colour cameras
were separately calibrated using OpenCV v4.7.0. For this process, the
RGB images were downsampled to be the same 640 × 480 resolution
as the depth maps before calibration. This was done to reduce the pro-
cessing burden and ease stereo registration. This 640 × 480 resolution
will be used for RGB and depth images throughout the remainder of
this work. Refer to Fig. 4 for examples of corresponding depth and
colour images obtained during this calibration with a common ‘‘real-
world’’ reference frame shown. The estimated intrinsic parameters for
both the colour and depth images were used along with the detected
checkerboard coordinates for stereo calibration to obtain the extrin-
sic parameters defining the transformation from the RGB camera’s
reference frame to that of the depth camera.

2.2.1. Projecting between depth map and RGB images
Consider a pixel in the depth map with 2D coordinates 𝒑̄𝑑 in the 𝑋

and 𝑌 axes directions, which has a depth value of 𝑍. One can convert
this into a 3D coordinate in the depth camera reference frame using

𝑿̄𝑑 =
⎡

⎢

⎢

⎣

𝑍 (𝒑̄𝑑 [1] − 𝑐𝑑1)∕𝑓𝑑1
𝑍 (𝒑̄𝑑 [2] − 𝑐𝑑2)∕𝑓𝑑2

𝑍

⎤

⎥

⎥

⎦

, (1)

where 𝒑̄𝑑 [1] and 𝒑̄𝑑 [2] are respectively the pixel coordinates in the 𝑋
and 𝑌 axes directions. Similarly, 𝑓𝑑1 and 𝑓𝑑2 are the depth camera’s
focal lengths in the 𝑋 and 𝑌 axes directions, 𝑐𝑑1 and 𝑐𝑑1 are the
coordinates of the central depth pixel in the depth map.
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Fig. 3. Examples of (a) an RGB image and (b) depth and (c) confidence maps captured by the Note 10+ of a grape bunch in the lab on a turntable. These were used to train a
YOLO model to detect individual grapes.
Fig. 4. Examples of the (a) RGB and (b) depth calibration images captured by the smartphone’s cameras.
This 3D point 𝑿̄𝑑 can be moved from the depth camera’s reference
frame to the RGB camera’s reference frame using the ridged body
transformation

𝑿̄𝑐 = 𝑹 𝑿̄𝑑 + 𝑻̄ , (2)

where 𝑹 is the stereo calibration rotation matrix and 𝑻̄ is the stereo
translation vector.

This 3D point can be coloured by finding the colour of the corre-
sponding pixel in the RGB image. The 3D point 𝑿̄𝑐 is first converted to
normalised coordinates using

𝒙̄𝒄 =
[

𝑿̄𝑐 [1]∕𝑍
𝑿̄𝑐 [2]∕𝑍

]

, (3)

where 𝑿̄𝑐 [1] and 𝑿̄𝑐 [2] are respectively the 𝑋 and 𝑌 axes components
of 𝑿̄𝑐 . This can be then converted into pixel coordinates on the RGB
image using

𝒑̄ =
[

𝑓𝑐1 𝒙̄𝒄 [1] + 𝑐𝑐1
𝑓𝑐2 𝒙̄𝒄 [2] + 𝑐𝑐2

]

, (4)

where 𝑓𝑐1 and 𝑓𝑐2 are the RGB camera’s focal lengths in the 𝑋 and 𝑌
axes directions and 𝑐𝑐1 and 𝑐𝑐2 are the coordinates of the central pixel in
the RGB image. No corrections were made for lens distortion or skew.
The colour of this pixel can be used as the colour of the 3D point in
either the RGB or depth camera’s reference frames.
4

By repeating the above process for all pixels in the depth map,
a coloured 3D point cloud can be generated. However, due to the
perspective shift in some situations, multiple depth pixels will map to
the same colour pixel. In this situation, only the point closest to the
camera should be retained. Refer to Fig. 5 for an example of the RGB
image and the corresponding 3D coloured point cloud obtained using
this method.

3. Detection of berries in the ToF depth scans

Fig. 6 shows an example of a ToF camera scan of a single grape
before and after it has been sprayed with an opaque coating (AESUB
3D Scanning Spray). This illustrates how the diffused scattering of light
within the grapes causes a distortion of the shape of the grape in the
3D scan. This manifests as a distinctive peak centred at the location of
each grape. Observing this effect led to the idea that these peaks could
potentially be used to facilitate the automatic detection of individual
grape berries in ToF depth images (Parr et al., 2022).

Fig. 7 shows a block diagram of the technique used to investigate
this idea. Each depth map captured by the smartphone ToF camera was
filtered to reduce noise using the corresponding confidence map. Depth
pixels that had a confidence value of less than 50% were removed.
This had the primary effect of removing distant points. In all cases, the
camera presented high confidence for pixels representing the grapes’
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Fig. 5. Image (a) shows an example of the RGB photo captured by the smartphone’s camera of a grape bunch in the field. Image (b) shows the corresponding colourised depth
map.
Fig. 6. Example plot showing a peak in the depth map due to a grape that has been
converted to 3D point cloud before and after it had been sprayed by an opaque coating.
This illustrates how diffused scattering within the grape berries causes distortion of the
depth scan in the form of peaks.

surface. This 50% threshold was empirically determined from analysis
of several images. Increasing this threshold caused the edges of grape
clusters to erode slightly. Meanwhile, reducing the threshold caused
background objects to be included and resulted in low persistence peaks
to be detected due to the noise.

To identify potential grape locations, a peak detection algorithm
was then used to identify peaks in the depth maps. A persistence ho-
mography technique (Huber, 2021, 2022) was utilised for this due to its
speed and robustness to noise. The persistence homography technique
generated a persistence value for each identified peak, representing
how significant a local maxima peak is in comparison to other local
peaks.

Fig. 8(a) shows an example depth image of a grape cluster in the
field, with the peaks detected by the persistence algorithm overlaid
as white crosses. The algorithm is capable of detecting peaks that
5

Fig. 7. Block diagram showing the technique used for calculating the 3D coordinates
of peaks in the depth map corresponding to grapes.

correspond to individual grapes. However, it also identifies peaks that
correspond to the edges of grapes, leaves, stems, and netting. Fig. 8(b)
shows the Signed Distance Field (SDF) of this depth map, which was
generated from a binary thresholded version of the depth map. This
is utilised to remove peaks near edges by disregarding peaks that are
closer than 7 pixels to an edge, as shown in Fig. 8(c) and (d). This
threshold was chosen empirically to ensure only peaks close to the edge
were removed and not those that may belong to small grapes. Future
work will need to explore methods for scaling this threshold according
to distance from the camera.

Manual analysis was performed for 50 of the scans of the grapes
captured in the field. The total number of grapes visible in the images
was manually counted. After which, peak locations were manually
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Fig. 8. These plots show the process of peak detection of a depth image captured in the field for the grape bunch shown in Fig. 1. Plot (a) shows the peaks (white crosses)
detected using persistence. Many peaks have been found on the netting in the background. In Plot (b), these peaks are shown over the generated signed distance field. Plot (c)
shows the resulting peaks after signed distance field filtering was used with the aim of removing peaks not corresponding to grapes. Plot (d) shows these filtered peaks overlaid
on the colourised depth map.
Fig. 9. Plot (a) shows the relationship between the number of grapes correctly detected using peak detection in the depth maps relative to the total number of grapes counted
manually in the corresponding RGB images. The identity line is shown as a dotted line and the line of best fit is shown in orange. Plot (b) shows a histogram of the precision.
checked to see how many of the peaks corresponded to grapes and
how many did not. Fig. 9(a) shows a plot of berries correctly detected
(true positives) by the peak detection in depth maps relative to the
total number of grapes visible in the corresponding RGB images. An
𝑅2 value of 0.680 was obtained for the linear fit through this data.
It can be seen that the technique underestimates the total number of
grapes. Some grapes on the edge of the cluster were not detected,
presumably because the centres of those grapes were occluded and
therefore did not manifest as distinctive peaks in the depth map. In
some cases, decreasing the SDF filtering threshold might result in an
increase in the number of peaks being detected at the edges of the
bunch. However, this will lead to an increase in the detection of peaks
caused by other objects, such as leaves and netting, being erroneously
identified as grapes.

The algorithm has been effective in eliminating most of the peaks
that did not correspond to grapes. However, some incorrect peaks
were detected, such as those corresponding to the peduncle between
berries and on the rachis. Fig. 9(b) shows a histogram of the precision.
The precision is calculated for each scan as the number of grapes
correctly detected by the peak detection (true positives) divided by
the total number of peaks identified as grapes (true positives plus false
positives). An average precision of 0.893 was achieved.

The depth peak detection technique showed promise for automat-
ically detecting grapes. However, it showed some limitations as de-
scribed above. Work was therefore performed to investigate whether
6

improved berry detection performance could be achieved by utilising
the corresponding RGB images. This work is described in the following
section.

4. Detection of individual berries in the RGB images

For this work, the popular YOLOv7 object detection model was
chosen to facilitate the detection of grapes in smartphone’s RGB images
(Wang et al., 2022). This selection was based on its well-established
performance for object detection in complex images, as well as its
pre-trained weights and open-source code that simplifies training new
classes (Wang, 2022). Training of a YOLO model requires images
labelled in the form of bounding boxes around the object that the model
is being trained to detect. This is traditionally done through supervised
training; a process of manually selecting the bounds that encompass
each instance of the object in question within an image. This process
can be time-consuming, particularly for grape berry detection, which
would require selecting individual grape berries in a large number of
images, and would need to be repeated for distinct grape varieties (Cia-
rfuglia et al., 2023). Therefore, an automated technique was sought to
perform unsupervised training utilising grapes detected through depth
maps. The block diagram shown in Fig. 10 illustrates the technique used
to investigate this idea.
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Fig. 10. Block diagram of the technique used to perform unsupervised training of a YOLOv7 model for detection of individual berries in the RGB images using the estimated 3D
coordinates from the depth maps.
4.1. Dataset used for YOLO training

To reduce the potential of using false positives when automatically
generating the bounding boxes, the scans of grapes captured in the lab
were used for training, see Fig. 3. Due to the controlled environment,
the grape clusters could more easily be isolated from the image. The
RGB images were downsampled to have the same 640 × 480 pixel
resolution as the depth maps.

4.1.1. Bounding box generation using depth map data
To automatically generate bounding boxes in the RGB images used

for YOLO training, the corresponding depth maps were employed.
Firstly, the depth maps were filtered to isolate the grape clusters by
removing points that were more than 300 mm away from the camera.
This was chosen as the grapes were suspended 200 mm from the
camera, and thus anything captured beyond 300 mm did not belong
to the grape bunch. Next, the same technique explained in Section 3
was employed to detect peaks in the depth maps that corresponded to
grapes. The confidence map with a threshold was applied to filter the
depth map, following which the persistence algorithm was utilised to
detect peaks. Finally, the signed distance field was used to eliminate
peaks that were too close to the edges of the grape bunch.

4.1.2. Autoencoder based outlier rejection
As discussed in Section 3, the peak detection technique described

would occasionally detect peaks that did not correspond to grapes.
Inspection of these peaks showed they often related to the peduncle vis-
ible between berries or on the rachis where the clusters were hung. In
each case, the erroneous peaks had significantly different profiles than
the true positives, which themselves had relatively uniform shapes. See
Fig. 12 for examples of both cases. These false positives could influence
the YOLO training and it was felt that a machine-learning technique
could be used to detect these anomalies and filter out peaks that may
not correspond to the centres of grape berries.

It was decided that an autoencoder would be used to identify peaks
in the depth map that may not correspond to grapes. This decision
7

was based on the idea that the autoencoder would be able to learn
information about the shape of different grape peaks, such as scaling
factors and symmetries, making it effective for identifying outliers (Zhu
et al., 2016).

To ensure efficient training and minimise overfitting of potential
outliers in the training set, the autoencoder’s latent space was inten-
tionally reduced in size. This reduction also aimed to prevent excessive
complexity without generating artefacts in the reconstructed images.

The autoencoder was implemented using TensorFlow in Python.
Fig. 11 shows a block diagram of the autoencoder used in this work.
The model consists of two parts: the encoder and the decoder. The
encoder maps the input image to a lower-dimensional representation,
while the decoder maps the encoded representation back to the original
image.

To feed the autoencoder, a 20 × 20 pixel sub-map was taken from
the depth map centred on the location of a detected peak, see Fig. 12.
This size was empirically chosen to be large enough to capture the
majority of a peak’s surface but not so large that it gets conflated by
the surface of neighbouring grapes. In total, 33,844 of these sub-maps
were generated and used to train the autoencoder. For convenience,
each sub-map was then upsampled to a 32 × 32 resolution to make it
a power of two suitable for use with the autoencoder.

The encoder takes the input image of size 32 × 32 × 1 and applies
three convolutional layers with 8, 4, and 2 filters respectively, each
using a 4 × 4 kernel, stride of 2, and a ReLU activation function. This
was designed to reduce the image size by half in subsequent layers, cre-
ating an effective encoding funnel for dimensionality reduction without
relying on large dense layers.

The decoder takes the encoded representation as input and recon-
structs the original image. The decoder starts with a fully connected
layer with 32 units, followed by a reshape layer that transforms the
output into a 4 × 4 × 2 tensor. Then, three transposed convolutional
layers with 4, 8, and 1 filters, respectively, each using a 4 × 4 kernel, a
stride of 2, and the ReLU activation function, are applied to the tensor.
The last transposed convolutional layer has a sigmoid activation func-
tion, which maps the output to values between 0 and 1, representing
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Fig. 11. Block diagram of the autoencoder convolutional neural network.
Fig. 12. Plot (a) shows the 20 × 20 pixel sub-maps shown as red boxes surrounding the detected peaks in the depth map that are used as the inputs of the autoencoder. Plot (b)
shows the average sub-map of the training set. Plot (c) shows an example of an erroneous sub-map relating to the peduncle visible in a cluster.
the pixel intensities of the reconstructed image. The model takes the
encoded representation as input and produces the reconstructed image
as output. This model is trained using mean squared error as the loss
function between the original image and the reconstructed image.

Through empirical evaluation, the above architecture demonstrated
optimal performance given the defined constraints and objectives. De-
creasing the number of filters in each of the convolutional and trans-
pose convolutional layers caused noticeable blocky artefacts in the
reconstructions. Similarly, reductions in the latent space size (e.g., from
16 × 1 to 8 × 1) resulted in reconstructed images that exhibited
similarity regardless of the input shape. These observations informed
the decision to strike a balance between reducing complexity and pre-
serving image fidelity. Future work will involve exploring alternative
architectures to identify optimal designs.

After training, the MSE value generated by the autoencoder can
be used with a threshold to classify if a peak corresponds to a grape
or some other object (an anomaly). This threshold was determined by
assessing the distribution of MSE scores of every sub-map in the dataset
and filtering using the Median Absolute Deviation (MAD). The median
of all scores was computed, and then the distance to this median was
computed for all sub-maps. The threshold was set to two times the
median of these distances, see Fig. 13. This allowed the autoencoder to
be used as a strong filter to remove potential outlier peaks that might
not correspond to the centre of the grapes.

The peaks remaining after the above filtering had been performed
were then used to automatically generate bounding boxes in the RGB
images for YOLO training. The coordinates of the peaks in the depth
map were converted to coordinates in the corresponding RGB images
using the stereo calibration parameters. Bounding box coordinates in
the RGB image were then calculated using a 50 × 50 pixel square
centred on the calculated peak location. This size was chosen to ensure
that the grape was completely encompassed. Additionally, a second
class label and bounding box were generated for the entire grape cluster
8

based on the overall bounds of the detected grapes and an additional
margin of 40 pixels.

4.1.3. Background augmentation
A limitation of the lab-collected data set was that it did not include

any images of leave or stems in them. This would have resulted
in the YOLOv7 model not being applicable to the field trails. To
address this, for each of the original turntable RGB images, two addi-
tional background-augmented images were added to the training data
set. Each augmented RGB image was generated by taking an original
turntable RGB image, isolating the grape bunch from the backgrounds
using the depth map information, and overlaying the extracted grape
bunch image over an RGB image captured of a grapevine randomly se-
lected from a set of 120 images. The labels for the original source image
were directly applied to these augmented images as the grape cluster
itself remained unchanged. Examples of the two resulting images for
one particular source image are shown in Fig. 14.

4.2. YOLO training

The dataset used to train and test the YOLOv7 model consisted
of 3186 images labelled with grapes and grape clusters. The dataset
was split into a training set (60%), a validation set (20%) and a test
set (20%). The training process followed the method described in the
official repository (Wang, 2022). The default configuration parameters
were used, and the training process was initiated with pre-trained
weights provided in the official repository as ‘‘yolov7.pt’’. To keep
memory requirements low, a batch size of 8 was used for training. The
training process was run for a total of 20 epochs, and although more
epochs were explored, no significant improvement was observed. The
training process was completed in 0.615 h using an Nvidia RTX 3090.
Refer to Fig. 15 for plots of the training results.
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Fig. 13. Plot (a) shows the distribution of mean square error (MSE) scores of all peaks that make up the training set for the autoencoder. Plot (b) shows the autoencoder’s
distribution of absolute deviations from the median along with the threshold used when applying these scores as a filter.

Fig. 14. Images of grapes captured on the turntable in the lab with images of leaves and vines added to the background.

Fig. 15. Results of YOLOv7 training over 20 epochs.
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Fig. 16. Example photos from the field of grapes with YOLO detection of individual grapes berries overlaid as white crosses and confidence values. Also shown as magenta boxes
is the YOLO detection of grape bunches. Plot (c) presents one of the more challenging images in the dataset where multiple withered grapes are visible and the trunk has been
incorrectly labelled.
4.3. YOLO results

The trained YOLO model was utilised to detect grapes in the RGB
images captured in the field. Fig. 16 presents examples of the de-
tected grapes using the trained model. Most visible grape berries are
accurately identified, although detection accuracy diminishes for out-
of-focus grape bunches in the background. Additionally, some grape
berries at the edge of the bunch remain undetected. Incorrect detection
of netting, vines, or leaves as berries in the background also occur.
Another issue arises when withered grapes are mistakenly identified
as multiple grapes, as seen in Fig. 16(c). This can be attributed to the
absence of withered grapes during the YOLO model training process.

To evaluate the performance of YOLO for detecting individual
berries, 50 field trial RGB images were randomly selected for manual
analysis. (Note these RGB images corresponded to the same depth maps
used for manual analysis of the depth peak detection technique shown
in Fig. 9.) These had a grape bunch centred in the image. Other grape
bunches in the background were ignored in the analysis since generally
either only a part of these secondary grape bunches could be seen
or they were out of focus in the RGB images. Manual counting was
then performed for the central grape bunch of the number of berries
correctly and incorrectly detected by the YOLO model. These were then
compared with the total number of grapes able to be manually counted
in the grape bunch.

Fig. 17(a) compares the number of berries correctly detected using
the YOLO model (true positives) to the total number of berries visible
for each of the main grape bunches. There is a systematic underesti-
mation of the number of berries counted using YOLO. Observations
suggest that this is mainly due to missed grapes around the outside
of the grape bunch, many of which have only a fraction of a berry
visible. The fit through the data has a 𝑅2 value of 0.946 and shows an
increasing deviation from the one-to-one line as the number of berries
in the cluster increase.

Fig. 17(b) shows a histogram of the precision. The precision for each
scan is calculated from the number of berries counted by YOLO (true
positives) divided by the sum of the total number of berries detected
by YOLO (true positives + false positives). An average precision of
0.970 was achieved. The number of false positives within the bounded
box selected by YOLO as the main grape bunch was 2.9% of the total
number of visible grapes in the main bunch with only 12% of the
images having more than 3 false positives.
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4.4. Location of YOLO detections in 3D

The process of projecting the detected grape locations in an RGB
image into 3D space is achieved by reversing the mapping process
discussed in Section 2.2.1 to identify the closest corresponding depth
pixel coordinate. However, due to differences in perspective and the
way peaks align with the direction of measurement, these projected
locations do not necessarily correspond to peaks in the point cloud.
As seen in Fig. 6, the peaks are the closes to the true surface of the
grape. Therefore, using points from other areas on the surface will lead
to significant errors in depth and subsequent estimated grape location.

To address this, a gradient descent technique was used to move
the detected grape locations to the peaks in the depth map before
projection. (Note that ‘‘gradient descent’’ is used rather than ‘‘gradient
ascent’’ since the peaks were towards the camera and hence had lower
depth values.) Specifically, the depth map scan of the grape bunch was
filtered by removing pixels with corresponding confidence map values
less than 50% and smoothed using a 5×5 pixel sliding average kernel.
This reflects the confidence thresholding used earlier. An iterative
gradient descent technique was then employed to move the grape
locations to the top of the peaks. The 5×5 pixel filter was selected
empirically to provide suitable noise reduction ensuring the descent
will not get stuck in small local minima but also retains definition so
that individual peaks can be found. The effectiveness of this technique
in improving the accuracy of grape location detection is illustrated in
Fig. 7.

The gradient descent algorithm adjusts the depth pixel location
iteratively using the following formula:

𝒑̄𝑖+1 = 𝒑̄𝑖 − 𝛼∇𝑱 (𝒑̄𝑖) (5)

where 𝒑̄𝑖 is the pixel coordinate at the 𝑖𝑡ℎ iteration, 𝛼 = 0.5 is the
traversal rate, and ∇𝑱 (𝒑̄𝑖) is the gradient of the smoothed depth map 𝑱
evaluated at coordinate 𝒑̄𝑖. This traversal rate was chosen empirically
due to its stability and rate of convergence. Values significantly greater
than this caused instabilities and values smaller caused convergence to
take longer.

The gradient of the smoothed depth map with respect to the 𝑋 and
𝑌 axes is computed as follows:
𝜕𝑱
𝜕𝑥

=
𝑱 (𝑦, 𝑥 + 1) − 𝑱 (𝑦, 𝑥 − 1)

2
(6)

𝜕𝑱 =
𝑱 (𝑦 + 1, 𝑥) − 𝑱 (𝑦 − 1, 𝑥)

, (7)

𝜕𝑦 2
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Fig. 17. Plot (a) shows the number of grapes correctly detected by YOLO versus the number manually identified in the photos for 50 grape bunches. The identity line is shown
as a dotted line and the line of best fit is shown in orange. Plot (b) shows a histogram of the precision.
Fig. 18. Plots showing cropped versions of the depth maps corresponding to the grape bunches shown in Fig. 16(a) and (b). The red lines show the path taken using the gradient
descent technique to move from the berry locations obtained by YOLO to the peaks in the depth map, which are shown as white crosses.
where 𝑱 (𝑦, 𝑥) is the value of the smoothed depth map at pixel location
(𝑦, 𝑥). The pixel location is updated using the gradient descent formula
until the algorithm terminates:

𝒑̄𝑖+1 = 𝒑̄𝑖 − 𝛼

[ 𝜕𝑱
𝜕𝑦 (𝑦, 𝑥)
𝜕𝑱
𝜕𝑥 (𝑦, 𝑥)

]

. (8)

This was repeated for 50 iterations in order to move the berry
location to the top of the nearest peak, see Fig. 18. In all tested cases,
this number of iterations was suitable to reach convergence. In cases
where the traversal distance exceeded 15 pixels, the original coordinate
was kept to prevent convergence on peaks too distant. This threshold
was empirically determined to give the best results across the dataset.

In the majority of situations, this technique works well. However,
in some edge cases, problems can show up. Some clear examples of
these are demonstrated in Fig. 18(b). In some cases, the gradient
descent process will cause multiple berry predictions to converge to
the same peak within the depth map. This appears to happen most
prominently on grapes that are occluded by a nearby grape causing
the gradient to be stronger towards the peak of the occluding grape.
In other cases, predictions of grapes behind the primary cluster (see
the top right) ascend into the primary cluster. This is more common on
grapes identified to the right and behind the primary cluster due to the
parallax shift between the colour and depth sensors. This convergence
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behaviour also may help in some situations where the YOLO model
predicts multiple grapes where only one exists. In this case, these
predictions will converge to the same peak in the depth map. How these
limitations can be solved or exploited will be the focus of future work.

Fig. 19 compares the scans captured using the depth peak detection
technique described in Section 3 and YOLO. We can see in the RGB
image that there are slight differences between where the two methods
have identified the location of the berries to be. However, for the 3D
plot, gradient descent has been used to move the YOLO berry locations
to the depth peaks. This results in similar berry locations being obtained
using both methods for the 3D point cloud.

5. Modelling of grape bunches

For grape yield estimation, it is desirable not only to count the
number of grapes but also to be able to estimate the size of individual
grapes so that grape volume can be estimated. This is particularly
the case for grape varieties that typically have a wide range of berry
diameters. The grapes used in this trial had a ‘‘hen and chicken’’
(Millerandage) effect where some grapes were smaller than others.
Knowing the size distribution of grapes is a useful metric for effective
vineyard management (Miras-Ávalos et al., 2019; Mirbod et al., 2016).
Additionally, it is desirable to know the 3D structure of the grapes
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Fig. 19. Cropped versions of the corresponding photo (a) and colourised depth map (b) of a grape bunch. Overlaid are the detected berry locations obtained using depth peak
detection (red crosses) and the YOLO model (blue crosses). For the depth map, the YOLO berry locations were moved to local peaks using gradient descent.
to allow better estimation of the total grape bunch volume and allow
merging of scans of a grape bunch from multiple angles. Initial work
was therefore conducted to estimate the size of the grapes detected and
also construct a 3D model of the visible grapes.

5.1. Estimation of berry size from RGB images

The size of individual grape berries was detected from the RGB
images using Hough transform circle detection. Initial trials using this
technique over the entire RGB image gave poor results and were
sensitive to hyper-parameter tuning; a limitation observed in existing
works (Ang et al., 2018; Schmidtke, 2018; National Wine and Grape
Industry Centre, 2019). Therefore, a two-step process was adopted that
exploits the available understanding of where berries are located. For
each berry location detected by the YOLO model, a 480 × 480 pixel
sub-image was extracted from the original high resolution 4032 × 3024
colour image, see Fig. 20. This is similar to the technique that was used
by Miao et al. (2021).

This sub-image was converted to grayscale and edge detection was
performed using a Sobel kernel. This kernel was then used to find the
gradient at each pixel in the 𝑋 and 𝑌 axes and the magnitude of these
two obtained. Circles were then detected using a Hough transform. In
cases where multiple distinct circles were detected, the circle closest to
the berry location detected by the YOLO model was used. The process
was repeated for all detected berry locations, see Fig. 21.

The radius of the detected circles in pixels was able to be converted
to a physical radius estimate using the knowledge of the distance of
the camera from the grapes given by the depth camera and the camera
calibration parameters. Similarly, the 3D location of each grape was
also able to be estimated by projecting the YOLO detected locations
onto the depth map using the process discussed in Section 4.4.

This information allowed a 3D model of the visible portion of the
grape bunch to be generated. Spheres corresponding to the grapes were
generated using their estimated size and 3D locations. This was done
under the assumption that the peak found in the depth map corresponds
to the closest point on the grape’s surface to the camera. Furthermore,
each grape can be modelled as a sphere where the point representing
the peak is one of a pair of antipodal points, which, together with the
camera origin and centre of the sphere, form a collinear set.
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The 3D coordinate of the 𝑖𝑡ℎ sphere (𝑖 = 1,… , 𝑁) is calculated using

𝑪̄ 𝑖 = 𝑿̄𝑖 + 𝒅̄𝑖 𝑟𝑖 (9)

where 𝑿̄𝑖 is the 3D position of the detected peak, 𝑟𝑖 is the radius of
the sphere identified using circle detection, and 𝒅̄𝑖 is the normalised
direction vector from the origin to the detected peak given by

𝒅𝒊 =
𝑿̄𝑖

‖

‖

𝑿̄𝑖
‖

‖

. (10)

Refer to Fig. 22 for an example of a 3D model obtained using this
technique overlain over the coloured 3D scan of the grapes generated
from the depth and colour camera data.

This circle-fitting technique gives an approximation of the sizes of
the grapes using the RGB images. However, errors can also be caused
by the circles fitting to other features in the image such as the edge of
another grape or colour changes on the surface of the grape. Also, many
of the grapes appear as ellipses in the image rather than circles, which
can lead to size estimation errors. Manual inspection of the fitted circles
over the RGB images indicated that the circle fitting predominately
resulted in some degree of underestimation compared to the true grape
size. Refer to Fig. 20(c) and (e) for examples of this. Future work should
explore using more advanced techniques such as the Holistically nested
Edge Detection (HED) and ellipse fitting technique described in the
work by Miao et al. (2021).

These issues raised the question of if it is possible to estimate the
size of the grapes without measuring their size from the image. The
following section investigates this in more detail.

5.2. Estimating berry size using depth

A technique was developed that estimates the size of the grapes and
generates a 3D model using the identified locations of the grapes and
the depth scan data rather than measuring the grape size from colour
images. This approach works under the assumption that grape clusters
are tightly packed and that they can be approximated as overlapping
spheres. We also assume that the amount of overlap is proportional to
their size.

Modelling of the 3D shape of the part of the grape bunch visible to
the cameras was performed by creating a sphere for each grape using
the method discussed in the previous section. To estimate the size of the
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Fig. 20. Photos (a), (c) and (e) show example RGB images that have been automatically cropped to be centred on a berry location identified by YOLO. Plots (b), (d) and (f) show
the corresponding Sobel magnitude versions that emphasise edges. Overlaid are the detected circles obtained using a Hough transform on the Sobel filtered images. It can be seen
that underestimation in the sizing of the grapes occurred due to factors such as the elliptical shape of the grapes and occlusion by neighbouring grapes.
Fig. 21. Sizing of grapes using circle detection.

grapes, the size of each sphere was iteratively adjusted with the aim of
optimising the overlap between neighbouring spheres and limiting the
maximum size to be within a limit realistic for grapes.

We want to optimise the maximum overlap distance between the
sphere being optimised and the neighbouring spheres while keeping the
maximum radius 𝑟max of each sphere under a limit. For this work, this
maximum radius was chosen to be 10 mm to ensure enough range to
capture the largest berries we could expect in a bunch of Chardonnay
grapes.
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The maximum overlap of the 𝑖𝑡ℎ sphere with its 𝑘𝑡ℎ neighbour is
determined by

𝛾𝑖 = max{(𝑟𝑖 − 𝑟𝑘) − 𝑓 (𝑖, 𝑘)} ∶ for 𝑘 = 1,… , 𝑁, (11)

where 𝑓 (𝑖, 𝑘) is a function that returns the distance between the centres
of the 𝑖𝑡ℎ and 𝑘𝑡ℎ spheres, and 𝑁 is the total number of spheres. For
each iteration, the algorithm calculates a change in radius 𝛥𝑟𝑖, for the
𝑖𝑡ℎ sphere based on the maximum overlap with neighbouring spheres. If
the maximum overlap, 𝛾𝑖 is less than 50% of the sphere’s current radius
and the sphere’s radius is less than 𝑟max, then the radius is increased by
a fixed amount of 𝛥𝑟 = 0.2 mm. However, if the maximum overlap is
larger than 50% of the sphere’s current radius or the radius is over 𝑟max,
then the radius is decreased by 10% of the current overlap. This can be
expressed as

𝛥𝑟𝑖 =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

0.2, for 𝛾𝑖 ≤ 0.5𝑟𝑖
and 𝑟𝑖 ≤ 𝑟max

−0.1𝛾𝑖, for 𝛾𝑖 > 0.5𝑟𝑖
or 𝑟𝑖 > 𝑟max

⎫

⎪

⎪

⎬

⎪

⎪

⎭

. (12)

These thresholds and step sizes were chosen from empirical testing to
help the simulation converge swiftly while also being stable. The 50%
overlap threshold attempts to capture the squishing behaviour observed
in the tightly grouped chardonnay bunches at the particular stage of
development that images were captured. Different thresholds can be
used to achieve different results and more work will need to be done
to explore its impact on the simulations accuracy for different cultivars
or stages of growth.

The simulation is run for a fixed number 𝑁iter of iterations to ensure
convergence. Changing the radius causes the position of the sphere
to change, see Eq. (9). Therefore, two passes over the spheres are
conducted for each iteration. The first calculates 𝛥𝑟𝑖 for each sphere,
and the second applies this change and updates the centre of the sphere
per Eq. (9). The change in radius is applied to calculate the updated
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Fig. 22. Example of the 3D modelling of the grape bunch overlaid onto the colourised depth map shown in Fig. 5. Plot (a) and (b) respectively show opaque and semi-transparent
versions of the modelled spheres with diameters obtained using the circle fitting technique.
Fig. 23. Plots (a) and (b) respectively show opaque and semi-transparent versions of a 3D modelling of grapes generated by growing spheres at the location of grapes obtained
from the peaks in the depth map. These are overlain over a 3D depth map scan of the grape bunch.
centre as follows

𝑪̄ 𝑖[𝑗 + 1] = 𝒅̄𝑖(𝛥𝑟𝑖 + 𝑟𝑖[𝑗]) + 𝑿̄𝑖 (13)

where 𝑗 (𝑗 = 1,… , 𝑁iter − 1) is the current iteration.
In this way, the position of the sphere is constrained by the rela-

tionship between its size and the amount of overlap with neighbouring
spheres. The sphere will grow or shrink as necessary to avoid excessive
overlap with neighbouring spheres, but it cannot exceed the maximum
radius specified. The size of the spheres can then be used to estimate
the size of the grape berries.

Refer to Fig. 23 for an example of a model of a grape bunch using
this technique. This method shows similar results compared to those
obtained using the circle fitting technique shown in Fig. 22. However,
the resulting 3D scan does appear to be more accurate than the circle
size approach when compared to the underlying colour image.
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5.3. Comparison of grape sizes obtained using the RGB circle detection and
depth techniques

Fig. 24 presents a comparison of the grape sizes obtained using
Hough transform circle fitting technique with those obtained using the
depth technique for the grape bunch presented in Figs. 22 and 23. It
can be seen that the radii obtained using the RGB method was system-
atically lower than that obtained using the depth method. This is in
line with expectations since the circle fitting tended to fit to one end of
the ellipsoid shape of the grapes causing an systematic underestimation
of the grape sizes, as illustrated in Fig. 20 (c - f). Additionally, the
distribution of these underestimations changes throughout the grape
bunch depending on the shape or occlusion of individual berries. This
explains some of the outliers present in the data and by extension the
low correlation. In two cases, the simulated grape sizes have reached
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Fig. 24. Comparison of the sizes of grapes obtained from circle detection in RGB
images compared to those obtained using the peaks in the depth maps. The identity
line is shown as a dotted line and the line of best fit is shown in red.

the maximum allowed by the simulation, 10 mm. This indicates that
those grapes were floating and did not have nearby grapes to constrain
their size. In such a case, it may be more correct to use the RGB
size estimations or a combination of the two. More work is needed to
evaluate the performance of both of these methods against ground truth
data and explore opportunities to combine both techniques for a robust
solution.

6. Conclusion

An Android app was developed for a Samsung Note 10+ smartphone
to capture RGB images and depth and confidence maps simultaneously
from its colour and ToF depth cameras. Stereo calibration of these
two cameras was then performed using a checkerboard pattern. This
allowed projection from the depth map to the corresponding RGB image
along with mapping from the RGB image back to the depth map.
Coloured 3D point clouds were able to be generated from the RGB and
depth data. The colour in these point clouds was not utilised in this
work but there is the potential for this to be used for improved results
in future work.

The smartphone was used in field trials to perform scans of Chardon-
nay grapes in situ. Additionally, measurements were taken in the lab
with samples of grape bunches from the field. A turntable was used to
capture scans of each of these grape bunches at a range of angles.

A technique was developed to automatically identify grape berries
in the depth maps using peak detection. This exploited the distortions
in the ToF depth camera images due to diffused scattering within
the berries. A persistence algorithm was used to detect peaks in the
depth map. A signed distance field filter was used to remove peaks
at the edges of objects and those corresponding to netting or leaves.
This technique successfully detected most of the visible grapes, though
some were missing particularly at the edges. An 𝑅2 value of 0.68 was
obtained for a linear fit between the number of grapes visible in the
RGB photos and those correctly detected using the depth peak fitting
technique. An average precision of 0.893 was achieved.

Automatically identifying grape berries from peaks in the depth
maps shows promise and further improvements could be made in future
work. For example, the autoencoder that was developed for the YOLO
training could be used to help improve the rejection of peaks that do
not correspond to grapes. Including registered colour information in
addition to depth could also help with improving the accuracy of this
peak detection technique. Convolutional Neural Networks (CNN) may
also provide an effective means of classifying which peaks are grapes.

A YOLOv7 model was trained to detect grape berries in RGB im-
ages captured by the smartphone. The dataset was constructed from
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lab-captured RGB and depth images. A technique was devised to fa-
cilitate unsupervised training by leveraging the peaks detected in the
corresponding depth maps. An autoencoder was implemented to elim-
inate non-berry peaks, including those associated with visible rachis
or peduncles. To enhance the dataset’s adaptability to outdoor envi-
ronments, training images were augmented with diverse foliage back-
grounds through depth-based masking of grape clusters.

An 𝑅2 value of 0.946 was achieved between a fitting of the number
of berries correctly detected by YOLO and those manually counted
in the RGB images and an average precision of 0.970 was achieved.
The fit shows an underestimation in the number of berries detected by
YOLO compared to those counted manually in the images. However,
the strong relationship suggests that linear compensation would be an
effective method of correction. The grapes that were missed by YOLO
were mainly those around the edges of the grape bunch. This may
be due to the fact that only a fraction of many of the berries on the
edges of the bunch are clearly visible due to occlusions by other berries.
However, it could also partly be related to the way the YOLO dataset
was constructed and the low sensitivity of the peak detection process
to occluded grapes on the edge of clusters. This may have meant that
the YOLO model did not have sufficient training for grapes at the edge
of the bunch. In future work, the manual selection of bounding boxes
around berries missed by the peak detection could help improve the
performance of the YOLO model in these cases. Additional training to
remove YOLO detection of withered-up grapes could also be performed.

The YOLO model also struggled with grape bunches in the back-
ground where the RGB image was out of focus. In future work, this
could be addressed using depth information by identifying the grape
bunch of interest and filtering YOLO-detected points that would be
out of focus in the RGB image. The grape bunch of interest could be
identified based on its 3D position in the scan. Alternatively, one could
manually click on the grape bunch in an image when capturing the
scan using the app. One could also remove some of the false positives
in the YOLO results using spatial filtering such as calculating the mean
distance from the location of each detected berry to that of its K-
nearest neighbours. More support could also be given to YOLO by
producing augmented training data where grape bunches are blurred.
Additionally, YOLO occasionally produced false positive results by
incorrectly identifying items in the background, such as netting or
leaves, as grape berries. More varied background augmentations will
help add robustness to these cases.

YOLO models are traditionally trained manually by labelling images
by hand. However, this can be very time-consuming. For individual
grape berry detection, this training would need to be repeated for dif-
ferent grape varieties. This is perhaps why only two works were found
where YOLO has been used to detect individual grape berries (Miao
et al., 2021; Roboflow Universe, 2021). The automated approach intro-
duced in this research, designed for unsupervised training of a YOLO
model to detect grape berries, has the capacity to accelerate the training
of YOLO models for a variety of grape types. The results presented here
showed good accuracy. However, more work is needed to compare the
accuracy obtained using this technique with that obtained using the
traditional manual labelling method. Additionally, future work should
investigate if adding manual labelling, particularly around the edges
of grape bunches, could help improve the accuracy of the automated
technique described in this work.

The berry locations detected by YOLO were able to be projected
onto the depth map using the depth and RGB camera stereo calibration
parameters. However, these predicted berry locations were generally
slightly misaligned relative to the peaks in the depth map. A gradient
descent technique was therefore developed that moved the projected
YOLO berry locations to the top of nearby peaks. A potential issue
with this approach is that it can result in two or more points detected
by YOLO converging to the same 3D peak location. This can be seen
demonstrated in Fig. 18(b) where berries detected in the background

have ended up on a peak in the main bunch. Future work could
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investigate alternative methods of combining the presented YOLO and
peak-based detection methods to provide a more robust approach to
berry detection and filtering false positives.

Estimation of the size of grape berries in the grape bunches was
performed with a two-step process. Firstly, circles were detected in the
RGB images at the grape locations obtained using the YOLO model.
Next, the physical size of each grape could be estimated from its size
in the RGB image, the distance of the grape from the camera calculated
from the depth map, and the RGB camera’s intrinsic parameters. This
eliminates the need for placing a reference object next to the grapes as
has been used in previous works.

The generated size estimates were utilised to construct a 3D model
of the grape bunch. By projecting the YOLO-detected berry locations
from the RGB image onto the corresponding depth map, appropriately
sized spheres were positioned at their respective 3D coordinates. Al-
though this technique showed potential, it often underestimated berry
sizes in our observations. In future work, one could investigate fitting
ellipsoids to the data rather than spheres, as demonstrated by Miao
et al. (2021). However, employing ellipses introduces additional hyper-
parameters that significantly increase the transform space and may be
influenced by image noise.

A sphere-growing optimisation technique was therefore developed
to estimate the size of the berries in a grape bunch without having to
measure their sizes in the RGB images. This approach works under the
assumption that grape clusters are tightly packed and that this can be
approximated as overlapping spheres. Spheres were placed as before
with the sizes iteratively adjusting to optimise the overlap among the
entire cluster. This approach is sensitive to cases where grapes do
not in reality touch other grapes or if some grapes are missed by the
YOLO model. Future work could look at combining size estimates from
RGB circle detection with this simulated approach as a method for
constraining size expectations for each berry.

These grape size estimation results obtained using both the RGB
and depths techniques showed promise. However, these results are
qualitative. More work is needed in the future to compare these results
with ground truth measurements of the physical sizes of the grape
berries using callipers or scanning techniques such as laser scanners,
photogrammetry etc.

Further work is also needed to build an understanding of the
grapes within the cluster not visible to the camera. Past research has
approximated these with a simple scaling factor. Our 3D models may
also be accurate enough to extend to a complete phenotype estimate of
the hidden structure, a process typically used with high-resolution 3D
scans (Schöler and Steinhage, 2015). Additionally, scans from multiple
angles may be able to be combined to increase the proportion of the
grape bunch able to be included in the modelling.

This work was performed using a Samsung Note 10+ smartphone.
However, the techniques should extend to any system that has a
combined RGB camera and ToF or LiDAR depth cameras. This includes
a range of modern smartphones from Apple and Android and low-cost
depth camera systems that are currently commercially available such
as the Microsoft Azure Kinect DK. Additionally, the YOLO model is
suitable for berry detection with standalone RGB cameras without a
smartphone for depth sensors.

The data used in this work was for Chardonnay grapes, which are
green in colour. Initial lab-based trials were also performed on red
table grapes, though the results are not presented here. Similar peaks
were observed in the ToF depth maps captured of these red grapes
compared to those presented in this work. This leads to some confi-
dence that the technique would be extendable to other grape varieties.
However, additional experiments with different grape varieties would
be beneficial.

The field trials were performed on the grapes approximately two
weeks before harvest. It is beneficial for growers to perform yield
estimation measurements at this stage of growth so that they can
16

estimate the volume of grapes that will be harvested, etc. However,
it is also desirable to be able to perform yield estimations at different
stages of grape maturity. It is likely that the diffused scattering within
the grapes that is causing the peak distortion may change with grape
maturity. Therefore, it would be desirable in future work to perform
further trials of grapes at a range of maturity levels.
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