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Abstract: This paper reports on the development of an ultrasonic sensing-based active localization
system. The system employs an ultrasonic array to transmit chirp signals and time-of-flight measure-
ment for ranging. The position of the receiver is estimated iteratively using the spring-relaxation
technique. A median and 90-percentile error of 12.4 and 21.7 mm, respectively, were obtained for
measurements at 625 positions within a 1.2 m × 1.2 m area testbed. The spring-relaxation technique
outperforms the widely adopted linear least square-based lateration technique while using the same
ranging data. The performance of the system is benchmarked against that of visible light positioning
using the same platform setup. The reported results show the ultrasonic system to be more accurate
when compared with the visible light positioning system, which achieved median and 90-percentile
errors of 33.7 and 58.6 mm, respectively.

Keywords: ultrasound indoor localization; spring-relaxation; linear least square lateration; visible
light positioning; multipath

1. Introduction

Knowing where you are and your position in relation to the surroundings is called
context-aware localization. One of the best-known context-aware localization methods
used in the outdoor setting is the Global Positioning System (GPS). This satellite-based
positioning has been popularly used for numerous applications. However, GPS cannot
be reliably applied in an indoor environment due to the signal attenuation caused by the
building of structural material. Consequently, other technologies have been researched for
indoor localization systems. Indoor localization research is a growing field, as it has not
reached the same level of scalability and adoption rate as that of GPS. The proliferation of
modern smart phones, efficient and energy saving wireless sensor nodes, wearable devices
and Internet of Things (IoT) technologies have all contributed to the rising popularity of
this research area. While Light Detection and Ranging (LiDAR) [1] and computer vision-
based [2] techniques have become popular, especially for mobile robotics, researchers are
still exploring alternate solutions. They include WiFi [3], Radio Frequency Identification
(RFID) [4], ZigBee [5], visible light [6], ultrasound [7] etc. Wireless-based techniques are
considered to be less accurate compared to ultrasound and visible light-based methods.

Ultrasound indoor localization (UIL) systems that have been implemented in prac-
tice [8–21] show that the 95-percentile position accuracy can vary from about 30 mm to
200 mm. The BAT system is an example of one of the more sophisticated solutions [22].
A review of the literature indicates that a trilateration/multilateration algorithm is the
most commonly used positioning algorithm for ultrasonic localisation. Spring-relaxation
(SR) is another technique that has been used for localization in the Wireless Sensor Net-
work [23–27], similarly to Wifi, Zigbee, Bluetooth, and visible light positioning (VLP) [28].
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However, we have not found any previous practical ultrasound localization studies that
have used SR.

In this work, we implement an ultrasonic (US) localization system using spring-
relaxation technique. The weightings are carefully formulated after observing that the
ranging has better accuracy when transmitter (Tx) and receiver (Rx) distance is further
apart. Thus, the larger the Tx-Rx separation, the more weight will be contributed to the net
force of the springs. These results are benchmarked against that of a lateration algorithm.
The performance of the UIL is also benchmarked against a Visible Light Positioning (VLP)
system. VLP [29] has garnered the attention of the research community due to its synergy
with the upcoming Visible Light Communication (VLC) [30]. VLP is considered to be
extremely accurate with reported errors in the order of just a few cm. Spring-relaxation
has been investigated for VLP, showing promising results [28]. Therefore, we decided to
compare the two systems using the same testbed and algorithm.

The work offers the following contributions:

(1) This is the first work to apply the spring-relaxation algorithm for ultrasound indoor
localization (UIL) in a realistic sub-room scale environment. The weights, analogous
to the Young’s modulus, of the springs are adjusted to mitigate the ranging error re-
sulting from multipath interference. To the best of the authors’ knowledge, this novel
concept of utilizing springs of varying stiffness to mitigate multipath interference has
not been reported in the literature.

(2) This work is also the first study to benchmark the accuracy of UIL against a Visible
Light Positioning (VLP) system using the same platform setup. This is the first
reported work that performs an “apple-to-apple” comparison of the two methods.

The rest of the paper is structured as follows. Section 2 gives a brief overview of
localization using lateration and spring-relaxation techniques. Section 3 describes hardware
and methodology used for ultrasonic localization. Section 4 reports on the performance
of ultrasonic localization for spring-relaxation and lateration techniques. In Section 5, the
ultrasonic localization results are benchmarked against VLP using identical positioning of
anchor and target nodes. Section 6 gives conclusions and suggestions for the future work.

2. Localization Theory

Consider the ultrasonic localization setup shown in Figure 1. Here there are four fixed
ultrasonic transmitters (anchor nodes), TX1–TX4, located on the ceiling of a room. Below
these is an ultrasonic receiver (target node). To find the position of the receiver, ultrasonic
time-of-flight (TOF) measurements can be made. This is the time it takes for the signal to
propagate from a transmitter to the receiver. These can be converted into distances Di using
the speed of sound in air. If the target height hi of the ith transmitter above the receiver is
known, these propagation distances can be converted into horizontal ranging distances ri

using Pythagoras theorem ri =
√

D2
i − h2

i . These ranging distances can then be used for
localization using algorithms such as lateration.

Figure 1. Horizontal (projected) distance range values, r1, r2, r3 and r4 on the XY plane.
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2.1. Lateration

Localisation can be performed using lateration by finding the intersection point of
circles or spheres, which have radii equal to the ranging distances ri, obtained using the
ultrasonic time-of-flight (TOF) measurements. The algorithm requires a minimum of three
range distances from the reference anchor nodes to the unknown target unit, to form the
three equations. The intersection point, which can be derived using the linear least square
(LLS) method, is taken to be the position of the target unit. On the other hand, the position
accuracy can be affected if the intersection is not in the exact cross point of the three circles,
but rather in the overlapping area as depicted in Figure 2. This can be caused by TOF
measurement errors.

Figure 2. This diagram shows how tri-lateration can be used for localization. In diagram (a), the
localization circles from three anchor nodes intersect at a single point P. In contrast, diagram (b)
illustrates how distance errors result in the circles not intersecting at a single point meaning a least
square fitting method is required for position estimation.

Linear least square (LLS) is the most common method of solving the lateration problem.
With range estimates from N transmitters located at (x1, y1) . . . (xN , yN), the estimated
location (x̂, ŷ) of the target is given as [31]:[

x̂
ŷ

]
=
(

AT A
)−1

ATb (1)

where A is an (N − 1) × 2 matrix defined as:

A =


−2(x2 − x1) −2(y2 − y1)
−2(x3 − x1) −2(y3 − y1)

...
...

−2(xN − x1) −2(yN − y1)

 (2)

and b is the (N − 1) × 1 vector:

b =


r2

2 − r2
1 −

(
x2

2 − x2
1
)
−
(
y2

2 − y2
1
)

r2
3 − r2

1 −
(
x2

3 − x2
1
)
−
(
y2

3 − y2
1
)

...
r2

N − r2
1 −

(
x2

N − x2
1
)
−
(
y2

N − y2
1
)
 (3)

and ri (i = 1, 2 . . . , N) are the range estimates and T represents the transpose operation.
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2.2. Spring-Relaxation

The principle behind the SR technique is to estimate the position of a target unit using
fictitious springs and Hooke’s law, as indicated in Figure 3. The location of the ith anchor
node can be expressed as a cartesian complex number:

Xi = xi + j yi, (4)

where i = 1 to 4 (TX1 to TX4 in this case) and the imaginary number, j =
√
−1, is used here

to represent the y-axis direction. Each of these anchors is attached by a fictitious spring to a
target (e.g., receiver) node, whose position we want to know.

Figure 3. Application of spring-relaxation technique for location estimation.

The target is assumed to start at an initial guess position, which is not in an equilibrium
state, with each of the springs being either stretched or compressed. The coordinates of the
current estimated position of the target is given as:

Xest = xest + j yest (5)

The current length of the ith spring is then:

li =|Xest − Xi| (6)

The individual force exerted on the target by the ith spring can be represented in polar
format as:

Fi = | ri − li| ejθli = | ri − li| angle (θli ), (7)

where ri is the horizontal projection value from Di, which is the range distance obtained
from TOF measurement at that test location, and i = 1 to 4 (no. of springs). θli is the angular
direction of the force Fi acting on the ith spring with | ri − li| giving the magnitude of the
said force. Equation (7) is essentially Hooke’s law with the spring constant being unity.

The net force exerted on the target will be:

→
Fnet =

4

∑
i=1

Fi (8)
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At each iteration of the SR algorithm, the target will be moved by a small step size

from its current position towards the direction of the net force,
→

Fnet. Hence the target’s new
current estimate position is:

Xm+1
est = Xm

est + ∆Fm
net, (9)

where m is the iteration number and ∆ is the applied step size. The SR algorithm will then
update the li (Equation (6)) based on the new current estimate coordinate and re-calculate
the individual force and the total net force on the target. The algorithm keeps repeating the
whole process and updates the location estimate as it goes along, and it will stop processing
when the net force reaches a pre-defined threshold value σ (10−4 in our algorithms) giving:

→
Fm

net < σ (10)

Now all the fictitious springs have reached their equilibrium state and this position is
taken as the estimated location of the target.

3. Localization Hardware and Data Collection
3.1. Ultrasonic Hardware

A block diagram of the ultrasonic system used to measure ultrasonic time-of-flight,
TOF, and, hence, distances is shown in Figure 4. An ultrasonic excitation signal was
generated on a computer and then converted to an analogue signal utilizing one of the
digital-to-analogue converter (DAC) channels of a Data Translation DT9832A https://
www.mccdaq.com/Products/Multifunction-DAQ/DT9832 (accessed on 23 February 2021)
module using the MATLAB Data Acquisition toolbox. A sampling rate of 500 kHz and
a resolution of 16 bit were used. This analogue signal was then used to drive the ultra-
sonic transmitter.

Figure 4. Block diagram of the ultrasonic system used to obtain distance measurements. DAC:
digital-to-analogue converter; ADC: analogue-to-digital converter.

The ultrasonic transmitter unit used in the localization system was composed of eight
tightly packed MA40H1S-R https://www.murata.com/en-us/api/?cate=&partno=MA4
0H1S-R (accessed on February 23, 2021) air-coupled surface mount transducers. These
transducers were wired in parallel on a PCB board (see Figure 5a). This array configuration
was used, rather than a single transducer, to increase the transmitted sound intensity, and,
hence, increase the maximum range where measurements could be made. The MA40H1S-R
ultrasonic transducers were used because the authors had previously found that these
transducers had lower ringing response when operated away from their resonant frequency
of 40 kHz. Refer to [32] for more details. Ringing is the tendency of a transducer to oscillate
at its resonance frequency during and after an excitation signal has been applied to the

https://www.mccdaq.com/Products/Multifunction-DAQ/DT9832
https://www.mccdaq.com/Products/Multifunction-DAQ/DT9832
https://www.murata.com/en-us/api/?cate=&partno=MA40H1S-R
https://www.murata.com/en-us/api/?cate=&partno=MA40H1S-R
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transducer. A low ringing response is a desirable property for a transducer if TOF distance
measurements are made using coded waveforms and cross-correlation. This is because
ringing causes the signal being transmitted by the transducer to be distorted, reducing the
performance of the cross-correlation technique. (See next section for more details).

Figure 5. The US transmitter board containing eight surface mount transducers is shown in photo (a).
The receiver unit composed of a Panasonic WM61A microphone and pre-amplifier is shown in photo (b).

The ultrasonic excitation signal applied to the transducers was a linear chirp signal.
This was chosen as the transducers were found to be able to reproduce this type of ul-
trasonic excitation signal with minimal distortion and ringing compared to other coded
waveforms, such as barker codes, which have sharp temporal transitions. The chirp excita-
tion signal is widely used in radar applications due to its good autocorrelation or pulse
compression characteristics when used with cross-correlation [12,20,33]. It makes it easier
to detect the signal and distinguish it from the noise, giving good signal-to-noise ratio
(SNR) performance.

A linear chirp signal, which sweeps from a start frequency of frequency f0 to an end
frequency of f1 in a time duration of T can be defined as:

x[n] = sin

(
2π

[
f0 t +

µt[n]2

2

] )
, 0 ≤ t ≤ T, (11)

where the chirp sweep rate µ = ( f1− f0)
T and t[n] is the nth time interval. In this work, the

chirp swept from 20 to 35 kHz in a duration of 1 ms (see Figure 6).
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Figure 6. This plot shows in red an example of the chirp excitation signal that was applied to the
ultrasonic transducers, and in blue, the received signal measured by the microphone.
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The transmitted ultrasonic signal was detected using a Panasonic WM-61A https://
www.digikey.com/en/products/detail/panasonic-electronic-components/WM-61A/2528
43 (accessed on 23 February 2021) electronic microphone as a receiver (see Figure 5b). The
low-noise microphone can operate at ultrasonic frequencies. A pre-amplifier circuit ampli-
fied and filtered the microphone signal, removing frequency components below 10 kHz.
The resulting signal was then sampled with one of the analogue-to-digital converter (ADC)
channels of the DT9832A module and saved to file. A sampling rate of 500 kHz and
resolution of 16 bits were used. One of the digital outputs of the DT9832A board was con-
nected to the hardware trigger of both the DAC and ADC systems, and the same internal
clock was used for both. This ensured that both transmission and reception operations
were synchronized allowing accurate time-of-flight (TOF) measurements to be made. The
measured data were then saved to file for later processing.

3.2. Localization System Setup

The ultrasound indoor localization (UIL) prototype system consists of four of the
ultrasound (US) transducers/transmitters described above mounted on the ceiling. The
WM61a microphone receiver unit was mounted 1.6 m below to a computer numerical
controlled (CNC) machine with a dimension of 1.2 m × 1.2 m. The CNC machine has an
accuracy of 0.025 mm; orders of magnitude better than the expected localization accuracy
of the UIL system. The receiver board, mounted onto the CNC machine, can be moved
to various test locations with very high accuracy. This ensures that the ground truth is
accurately recorded. Figure 7 illustrates the UIL system test rig set up that was used.

Figure 7. The diagram in (a) shows the UIL system set up. The actual UIL test rig with CNC machine below is shown in
photo (b). A closeup view of the receiver microphone on the CNC is shown in photo (c). UIL: ultrasound indoor localization;
CNC: computer numerical controlled.

3.3. Data Collection

The four anchor transmitter stations TX1 to TX4, shown in Figure 7b, each sends out
its ultrasound wave to the target object. The transmit and receive hardware is synchronized
through the DT board, as described in Section 3.1. In real-world implementation, either an
RF or infrared signal can be used to trigger the synchronization between the US emitter
and receiver [34]. A time division multiple access (TDMA) [35,36] scheme can be deployed
to multiplex the ultrasound emission between these anchor/emitter nodes. At any test
point, there will be four different range distance values, e.g., D1, D2, D3 and D4 obtained
at one location (see Figure 7a). Figure 8 shows how the CNC machine was used to obtain
measurements with the target object (microphone in this case) at a range of positions in
a grid pattern starting from coordinate (0 mm,0 mm) to the last coordinate (1200 mm,
1200 mm) with 50 mm step increments between measurement locations.

https://www.digikey.com/en/products/detail/panasonic-electronic-components/WM-61A/252843
https://www.digikey.com/en/products/detail/panasonic-electronic-components/WM-61A/252843
https://www.digikey.com/en/products/detail/panasonic-electronic-components/WM-61A/252843
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Figure 8. Traverse path of the target object equipped with microphone receiver in the CNC’s 2-
dimensional XY plane. The asterisks show the test points where the data were recorded.

At each step, the TOF values from the four transmitters on the ceiling are then con-
verted to ranges (D1–D4) to be stored in the database for usage in the localization algo-
rithms later. The ambient temperature impacts the speed of sound in the air, ultimately
affecting the range estimation. Therefore, the room temperature was recorded during the
experiments. For a real-world system, a temperature sensor of high accuracy and low
power consumption (e.g., TMP117, https://www.ti.com/product/TMP117 (accessed on
23 February 2021)) can be collocated with the receiver tag.

3.4. Processing for Estimating Time-Of-Flight, TOF

One method of measuring TOF in ultrasonic data is to use a threshold method. Here
the TOF is determined to be the time when the signal first goes above a threshold voltage.
However, a problem with this technique is that it can struggle to give accurate results as
the signal-to-noise ratio (SNR) reduces.

Cross-correlation is an alternative method that is generally more robust in low SNR
conditions. The cross-correlation function of transmit signal x[n] with the received signal
y[n] can be defined mathematically as [37]:

Rxy [k] = ∑N−1
n=0 x[n] y[n− k], (12)

where n is the sample index, N is the total number of samples, and k is the number of
samples that the data shifted. This shift can be related to a time shift τ using k = τ Fs, where
Fs is the sampling rate. The time shift when the cross correlation reaches its maximum value
is taken as the estimate of the TOF. This technique works best where excitation waveforms
are used for transmission that have good autocorrelation properties, such as chirps.

Figure 9 shows an example of a raw signal measured in a room and the cross-
correlation of this signal with the transmit signal. Here we can see multiple peaks in
the signal. The first peak is the direct path signal which is the one that is used for TOF
measurements. The other peaks are due to multipath signals resulting from echoes from
walls, the floor etc. A threshold method can be used to select the direct arrival signal for
TOF measurement and ignore secondary peaks resulting from multipath echoes.

https://www.ti.com/product/TMP117
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Figure 9. An example of the receiver’s signal taken at one of the target’s positions is plotted in (a).
The corresponding cross-correlation signal is shown in (b). Multipath signals can be seen.

4. Ultrasonic Localization Results

The accuracy of a localization system is most commonly evaluated through measuring
the localization uncertainty which is termed as localization error in the literature [29].
Localization error is defined as the Euclidean distance between the actual position of
the target (the ground truth) and the estimated position of the target. The cumulative
distribution function (CDF), mean, median and percentile values of the localization error
are used in this paper to investigate the localization accuracy following the guidelines
of [38,39]. The standard deviation of the localization error is also reported.

4.1. Spring-Relaxation Results

A value of 625 positions (see Figure 8) were tested. For our testbed, the larger ranging
errors appear in the regions that are closer to the transmitters, as shown in Figure 10. This
was believed to be due to echoes being picked up by the microphone when the receiver
was located under one of the transmitters. These multipath components were not resolved,
leading to error in TOF measurements.
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Figure 10. Measured ranging errors as a function of horizontal distance from the transmitter. Larger
ranging errors occur when the receiver is near the transmitter.

This range-dependent error led us to modify Equation (7) to use weightings while
calculating the forces acting on the springs giving:

F(i) = w(i) | ri − li| angle (θli) (13)

The weights are estimated as:

w(i) =
ri

∑4
i=1 ri

(14)

The weighting w(i) is analogous to the spring constant, with larger springs, repre-
senting larger Tx-Rx separation, considered stiffer. Thus, the larger the spring, the more
the contribution it has to the net force, since the ranging is more accurate for larger Tx-Rx
separations. While the concept of variable stiffness has been utilized to account for the
measurement uncertainty in wireless sensor networks [40], it has not been applied for the
mitigation of US ranging error.

As a result of applying variable spring stiffness (Equation (13)), the localization
performance was seen to improve (see Figure 11). This figure is the cumulative distribution
function, CDF. It shows the probability that an error of a particular size will occur. For
example, we can see that with identical spring stiffness, 90 percent of the errors are less
than 33.8 mm. The mean error reduced from 17.6 to 13.0 mm when using the weighting
method. Table 1 summarizes the results of the SR algorithm for the two cases.
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Table 1. Localization accuracy of the proposed spring-relaxation algorithm.

With Identical Spring Stiffness
(no Weighting)

With Variable Spring Stiffness
(with Weighting)

Median = 15.2 mm
Mean error = 17.6 mm

90-percentile = 33.8 mm
Std-deviation = 12 mm

Median = 12.4 mm
Mean error = 13.0 mm

90-percentile = 21.8 mm
Std-deviation = 6.9 mm

4.2. Benchmarking Spring-Relaxation (SR) with Linear Least Square (LLS)-Based Lateration

The ultrasound indoor localization (UIL) accuracy error obtained from both the meth-
ods of LLS lateration and SR are shown in Figure 12 and Table 2. As can be observed, the
SR algorithm outperforms the lateration in terms of accuracy, with lower error.
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Table 2. Localization accuracy error of the spring-relaxation algorithm compared to LLS lateration.

Lateration Spring-Relaxation

Median = 14.5 mm Median = 12.4 mm
Mean error = 13.8 mm Mean error = 13.1 mm

90-percentile = 25.9 mm 90-percentile = 21.8 mm
Std-deviation = 8.0 mm Std-deviation = 6.9 mm

5. Benchmarking with Visible Light Positioning (VLP)

VLP systems have been shown to be accurate in the order of several cm [6]. VLP is a
positioning technique that makes use of the visible light emitted from sets of LED luminaires
to localize a photosensor-equipped target object in an indoor setting environment (see
Figure 13). Received signal strength (RSS) at the photosensor is the most common way to
find the range of the target from the corresponding luminaire [29].
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Figure 13. Overview of the VLP system. VLP: visible light positioning.

5.1. VLP System Hardware

The VLP system used the exact platform set up as our UIL system. Four LED lu-
minaires were placed in the same positions that were previously occupied by the US
transmitters. Each luminaire, utilizing a bespoke driver, transmits unmodulated sine
waves [41]. For the experiments conducted, the luminaires are set to unique frequencies of
2.5, 2.7, 3.2 and 3.5 kHz, respectively, allowing for frequency-division multiplexing (FDM)
of the transmitted signals.

The receiver board is equipped with a photodiode (PD) followed by a transimpedance
amplifier that feeds an ESP 8266 microcontroller to perform analog-to-digital conver-
sion [41]. Fast Fourier transform (FFT) on the digital data performs the demultiplexing and
the magnitude of the FFT at the appropriate frequency (e.g., 2.5 kHz). This provides the
RSS for the corresponding luminaire.

5.2. Range Estimation for VLP

If the receiver plane is kept horizontal with the transmitter plain, the simplified
Lambertian propagation model gives the received power Pri at a distance di from the ith

luminaire as [6]:

Pri = Pri,0

(
di,0

di

)mi

, (15)

where mi is the Lambertian order and Pri,0 is the received power at a distance di,0 (refer to
Figure 14).

Figure 14. VLP system depicting the parameters of Lambertian propagation model.
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The received signal at the receiver at location (x, y) can be expressed as:

s(t) =
4

∑
i=1

Gi sin(2π fit + θi), (16)

where fi and θi are, respectively, the frequency and phase of the sinewave of the ith

luminaire at location (x, y), and Gi is essentially a function of the distance di between the
photodiode at location (x, y) and the ith luminaire.

The spectrum S(ω) of the signal at angular frequencies ω can be computed using the
fast Fourier transform (FFT). The power spectrum can then be calculated using:

ˆ
Pss(ω) =

1
N
|S(ω)|2. (17)

The power spectra,
ˆ
Pss(ω), at the known modulation frequencies (2.5, 2.7, 3.2 and

3.5 kHz) are used to estimate the received power Pr,i for each luminaire. Lambertian orders
mi, Pri,0 and di,0 are estimated by following the calibration process outlined in [6]. This
involves taking offline measurements at 17 points. Refer to Figure 15 for the location of the
calibration measurement points.

Figure 15. Measurement locations and test setup for the VLP system.

Once di is found from for all four luminaires, the spring-relaxation algorithm outlined
in Section 4.2 was used to find the location of the target. Here, the target object, with
the photodiode sensor, is taking the place of microphone receiver unit. The localization
accuracy of the VLP is shown in Table 3. and in the CDF plot shown in Figure 16. As can
be seen, the UIL system is far more accurate than the VLP system.

Table 3. Localization accuracy of the UIL compared to VLP.

UIL VLP (mm)

Median = 12.4 mm Median = 33.7 mm
Mean error = 13.0 mm Mean error = 36.5 mm

90-percentile = 21. 8 mm 90-percentile = 58.6 mm
Std-deviation = 6.9 mm Std-deviation = 17.3 mm
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One advantage of UIL compared with VLP for localizing an object in an indoor
environment is its relatively easy and straight-forward hardware set up. Visible light
positioning (VLP) requires extra care to make sure that the transmitters placed on the
ceiling are parallel to the photoreceiver below. Parameter calibration [6] is also essential
in VLP in order to achieve the best fit RSS-distance attenuation model for accurate range
distance calculation. Furthermore, the luminaires degrade over time and there may be
changes in the room (e.g., moved furniture). Additional calibration will be required to
account for these changes.

6. Conclusions

The SR algorithm was successfully implemented for an UIL system to achieve accurate
positioning. For the experimental set up utilized, SR outperforms the well-known LLS-
based lateration technique. Therefore, the SR algorithm should be further explored. The
convergence and the stability of the SR algorithm has been left for future studies. To
improve the power output, and, hence, the operational range, an array of eight air-coupled
ultrasonic transducers were used. These transducers were specifically chosen due to their
low ringing transient response. This means that the high accuracy TOF measurements
were able to be obtained using cross-correlation with chirp excitation waveform. More
work is needed to develop wireless synchronization for accurate TOF measurements.

Furthermore, the UIL system was found to be more accurate than a VLP system.
Unlike the VLP system, the UIL system does not require parameter calibration, as it only
needs the ambient temperature, making it easier to deploy in a changing environment.
It should be noted that VLP has the advantage of being able to potentially leverage the
existing lighting systems if the luminaires are enabled with VLC technology. In such a
scenario, the ultrasonic technique can be fused with the VLP system to extend coverage,
eliminate blind spot, provide fault tolerance and enhance robustness.

The localization techniques explored here, for both UIL and VLP, are memoryless;
they do not take the position estimate of the previous state into account to compute the
current position. Future work can explore the utilization of continuous tracking using
Kalman [42] or particle filters [43].
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M.L.; software, M.T.C.; validation, M.T.C.; formal analysis, M.T.C.; investigation, M.T.C.; writing—
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