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ABSTRACT Passive indoor positioning, also known as Device-Free Localization (DFL), has applications
such as occupancy sensing, human-computer interaction, fall detection, and many other location-based
services in smart buildings. Vision-, infrared-, wireless-based DFL solutions have been widely explored in
recent years. They are characterized by respective strengths and weaknesses in terms of the desired accuracy,
feasibility in various real-world scenarios, etc. Passive positioning by tracking the footsteps on the floor has
been put forward as one of the promising options. This article introduces CapLoc, a floor-based DFL solution
that can localize a subject in real-time using capacitive sensing. Experimental results with three individuals
walking 39 paths on the CapLoc show that it can detect and localize a single target’s footsteps accurately
with a median localization error of 0.026 m. The potential for fall detection is also shown with the outlines
of various poses of the subject lying upon the floor.

INDEX TERMS Capacitive sensing, device-free localization, electric field sensing, fall detection, footstep
detection, footstep tracking, human sensing, indoor localization, indoor positioning system (IPS), passive
positioning.

I. INTRODUCTION
Passive indoor positioning is the key enabling technology for
applications likeAmbient Assisted Living (AAL) andHuman-
Computer Interaction (HCI). Unfortunately, even with the
attention of researchers for over two decades, passive posi-
tioning or Device-Free Localization (DFL) remains a prob-
lem to be solved. Camera-based techniques can accurately
locate and identify a tag-less target with reasonable accuracy
[1]. However, they require good lighting conditions and are
adversely impacted by occlusion. More importantly, privacy
is a significant concern making such systems less acceptable
in many applications, especially in a residential setting. Many
accidents and falls happen in places such as bathrooms and
bedrooms where cameras would be considered to be inva-
sive. While efforts are underway to utilize privacy-preserving
single-pixel cameras [2], [3], it is still early days for such a
technique.

Passive localization using Radio Frequency (RF) sensing
has been extensively researched in recent years [4], [5].
While RF-based localization has the advantage of potentially
being able to repurpose the wireless networks within the
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built environment, there are some inherent disadvantages like
limited accuracy due to multipath reflections. Application of
the Channel State Information (CSI) metric utilizing many
Wi-Fi subcarriers can mitigate the multipath issue [6] to
achieve much-improved accuracy [7]–[9] and even perform
sophisticated tasks like activity recognition [10]. However,
CSI is not available for the majority of the RF technologies
(e.g., Bluetooth and ZigBee). In addition to this, most
consumer-grade Wi-Fi hardware is yet to widely support the
use of this metric thus limiting its practicality.

Passive Visible Light Positioning (VLP) [11], [12] is based
on the principle that the presence of a subject alters opti-
cal channels. These changes can be detected by nearby
light-sensors as variation in the Received Signal Strength
(RSS) of the light level and subsequently used to estimate
the subject’s position. However, the majority of passive VLP
techniques are vulnerable to change in ambient light levels.
Also, they need good illumination conditions. Infrared (IR)
sensing has been proposed as an alternative way for DFL by
detecting the heat signature of a human target. Passive IR
(PIR) sensors, commonly available as motion detectors, have
been used for such localization [13]–[16]. However, PIR sen-
sors require relative motion between the sensors and a target.
Therefore, they are unable to deal with a stationary target.
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TABLE 1. Comparison of CapLoc with other floor-based positioning systems.

IR-sensing based positioning using thermopile sensors has
been proposed [17], [18] to deal with both stationary and
mobile targets. Unfortunately, such techniques are inher-
ently vulnerable to changes in heat signatures resulting from
clothing variations.

Humans spend much of their time in contact with the floor
when they are inside a building. Therefore, the floor can
be potentially repurposed as a large sensor for device free
positioning of individuals. Table 1 summarizes the key works
in the area of the floor-based DFL.

Pressure-sensitive floors [19]–[21] have been used for
locating and identifying people. There are also systems using
binary pressure-sensitive switches built into the floor [22].
Unfortunately, the pressure-sensitive floors appear to be com-
plex to build. Besides, the pressure sensors (e.g., load cells)
are also subject to wear and tear degradation, especially of the
mechanical components.

Floor-based localization can also be accomplished by mea-
suring footsteps-induced vibrations with a network of seismic
sensors [23]–[25]. The footsteps (and hence the target) are
located by exploiting the fact that vibration signals take dif-
ferent times to reach each sensor depending on the distance
between the footstep and the sensors. This allows performing
the localization using Time of Arrival (ToA) or Time Differ-
ence of Arrival (TDoA) techniques [25]. However, the floor
is a complex heterogeneous medium. It varies significantly
from one building to another. This makes the calibration chal-
lenging thus complicating the transfer of a relevant system
between different premises.

Capacitive sensing utilizing the change in capacitive cou-
pling between a custom-designed floor and target can be an
effective localization method. In this scenario, the floor and
the target form (two plates of) a capacitor. The presence of
the target alters the electric field, actively generated by a
transmitter, manifesting as a measurable change in the capac-
itance. Smart Carpet [26] uses fabric into which conductive
wires are sewn in serpentine patterns to form 0.15m× 0.15m
panels. Similarly, SensFloor [27]–[29] uses conductive tri-
angles embedded into a textile. Capacitive floor with metal
squares was utilized in [30], [31]. CapFloor [32] uses two sets
of parallel wires orthogonal to each other. A person walking
above them changes the measured capacitance in these wires.
Since a person is above at least one wire in each direction,

an intersection point of these wires presents the person’s
estimated position.

In contrast to the aforementioned works that use the load-
ing mode of the capacitive sensing [33], TileTrack [34], [35]
employs the transmit mode. A square wave signal transmitted
from the floor tiles is received by an additional electrode
placed in the room as a receiver. The detected change in the
signal amplitude caused by a person between the electrode
and the floor tile helps infer the location. Capacitive sensing
is also utilized in research [36], [37] where instead of using
the floor-based solution, electrodes are set up on the walls.

When a person walks on a typical floor, a charge is built
up due to the Triboelectric Effect [38]. The person can also
be considered as being an earthed conductor. Therefore,
the ambient electric field created by the radiation from the AC
powerlines (ever-present in buildings) is altered by the pres-
ence of a human target. This change can be measured with
Electric Potential Sensors (EPS) and used for both identifi-
cation of subjects [39] as well positioning of them [40]–[43].
Unfortunately, such opportunistic, passive electric sensing is
vulnerable to ambient electrical field noise and interference.
The relevant systems are mainly implemented using EPS
units that are placed on the walls or ceiling of a room.

This paper proposes a new capacitive floor system named
CapLoc for passive positioning. In a preliminary work [44],
the authors presented how a static foot can be detected when
a subject stands barefoot on a capacitive sensing panel. This
paper utilizes that concept to develop CapLoc, a positioning
system, for real time localization of a moving target accu-
rately and potentially detect fall in an automated manner.
It presents the following original contributions:

1. CapLoc can determine the position of a mobile tar-
get in real-time. It is not data-driven and therefore,
requires minimal calibration for localization making
it more invariant to changes in the setting. CapLoc is
also robust and not vulnerable to factors that adversely
affects other DFL systems like wireless multipath prop-
agation (affects wireless DFL), illumination condition
(impacts camera and passive VLP systems), clothing
worn by the target (affects IR-based systems) etc.;

2. The experimental results showing the localization of
a mobile target for multiple trajectories are presented.
The median and 90 percentile localization errors while
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TABLE 2. Comparison of CapLoc with other passive positioning systems.

testing with three different subjects are found to be
0.026 m and 0.066 m, respectively. This makes CapLoc
more accurate than most passive localization systems
reported in the literature (see Tables 1 & 2). Also,
the majority of the reported DFL systems were only
tested for a handful of target trajectories. In contrast,
CapLoc was tested for 39 different paths walked by
multiple subjects. An accurate ground truth recording
system was implemented using virtual reality technol-
ogy (HTC Vive [45]) to ensure that the localization
error is accuratelymeasured. By utilizing the procedure
outlined in the article, other researchers will be able to
record accurate ground truth in an automated manner,
using an affordable consumer grade technology;

3. It is shown that the poses of a person lying on the floor
can be captured easily. Potentially, this can be used for
automated fall detection in a non-obtrusive manner.

The rest of the paper is organized as follows. Section II
discusses the development of the CapLoc system. Section III
presents the footstep detection process. Section IV demon-
strates the localization performance. Pose capture for poten-
tial fall detection is shown in Section V. Section VI concludes
the paper and discusses future research directions.

II. SYSTEM DEVELOPMENT
A. KEY CONCEPT
CapLoc is based on the formation and the subsequent sensing
of loading mode capacitance [33], [46]. The concept is shown
in Fig. 1 where the subject’s foot and copper-foil tiles under-
neath the floor form the two plates of the capacitor. This
capacitor can be modeled as:

C = ε
A
d
, (1)

where C is the total capacitance, ε is the permittivity of the
dielectric (assumed to be constant), A is the overlapping area
of the two plates, and d is the separation between the two
plates (details shown in Fig. 1). When the subject stands with
a foot above the transmitting plate, the capacitance depends
on twomain factors: the proportion of the plate covered by the
subject’s foot (A), and the distance between the subject’s foot
and the plate (d). For a rigid floor type, the distance d remains

FIGURE 1. Loading mode capacitor formed by subject’s foot on CapLoc,
along with a simplified circuit diagram. A is the overlapping area of the
two plates, and d is the separation between the two plates.

fairly constant, whereas the area A changes as sensors could
naturally be covered to a different extent.

B. PROTOTYPE HARDWARE DESIGN
A 0.6 m × 0.6 m sensing panel, with 25 individual
copper-foil squares, is the basic building block of the CapLoc
floor (Fig. 2 and 3). Each copper square is soldered to
a wire that is connected along with 24 other wires to a
microcontroller (100-pin ARM Cortex M3 [47]) where the
capacitance is measured. The wires are routed within the gaps
between the copper squares. The total component cost of a
0.6 m × 0.6 m sensing panel (excluding the cost of floor-
boards) is approximately $6. Therefore, the cost of imple-
menting CapLoc, excluding labour, is less than $18/sqm
while offering significant functionality. Also, the cost of
the system is expected to decrease significantly with mass
manufacture.

The capacitance is measured by evaluating the RC time
constant of the equivalent capacitive circuit. The time taken
to charge a capacitor to a set voltage V0 is given by the
well-known RC charging equation:

V (t) = V0(1− e−t/τ ) (2)

where τ = RC .
If the selected resistance value R is sufficiently high, it can

be assumed to be reasonably constant and independent of the
unknown resistance to the ground. Time taken by the capac-
itor to charge to a set value, therefore, depends solely on the
capacitance. A microcontroller is used to charge the copper
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FIGURE 2. The structure of the floor. The floor can be topped with any
non-conductive flooring material such as wood, vinyl or carpet.

FIGURE 3. Block diagram of the CapFloor system architecture, with the
custom designed hardware sampling the capacitance values which are
sent to the PC app for the foot detection process. The foot detection is
performed by adopting image processing techniques.

plate through a high value resistor by applying a voltage to the
charging pin (Fig. 1). The time taken to reach a set voltage at
the sensing pin is measured. When a subject’s foot is near the
copper plate, the effective capacitance is much greater than
when there is no subject nearby. This leads to a significantly
longer rise time of the signal. The raw capacitance measure-
ments are sent from the microcontroller to an application
running on PC over the USB serial communication line. The
PC app processes and displays the incoming data in real-time
as well as saves the data for further analysis. The footstep
detection algorithm takes less than 2 ms to run on a standard
desktop PC running at 3.2 GHz. Trace drawing on the screen
takes around 15-20 ms. The floor is sampled at around 10 Hz,
giving the app plenty of time to process each frame whilst
waiting for the next data frame from the sensors.

C. FOOT DETECTION
Figure 3 illustrates the foot detection process that is
effectively an image processing algorithm where each capac-
itance value from the floor is represented as a single grayscale
pixel. When CapLoc is first powered on, a number (cur-
rently set to 10 after many rounds of empirical testing) of
capacitance readings are taken from the floor sensors as a
background estimation. It is then subtracted from each sub-
sequent capacitance measurement from the floor. Over time
the background estimations can drift. To counteract this phe-

FIGURE 4. The simultaneous detection of multiple feet from multiple
subjects (interpolated, before thresholding).

FIGURE 5. Foot after thresholding in socks (left) and in thick soled
footwear (right). In thick footwear the foot is smaller in area after
thresholding.

nomenon, periodic CapLoc recalibration can be implemented
by taking a new set of baseline capacitance readings when the
floor is known to be vacant. Over a long period, the amount of
time when a subject is standing on a square is small compared
to that when the subject is not standing on it. Therefore,
an alternate method is to take a long-term average of all
capacitance readings taken whilst the system is in use and
employ this long-term average as the baseline.

In terms of image processing, the measured capacitance
values form a very low-resolution image. Interpolation is
applied to improve its quality. Several interpolation algo-
rithms were tried. Cubic interpolation showed the best per-
formance while enhancing 2×2 images to 7×7 interpolated
ones.

A threshold is then applied to the data such that any capaci-
tance values below the threshold are set to become ‘‘0’’ while
those above the threshold are set to be ‘‘1’’. Once it is done,
blob detection through connected component analysis [48]
is applied whereby all connected squares are considered to
be a part of the blob or cluster. Each blob corresponding to
a single footprint can then be represented by a matrix M of
2×N dimension, where N is the number of data points in the
cluster. Each column of the matrix is a vector representing the
position of a single data point in the cluster.

The center of the footprint (x̄, ȳ) is estimated by averaging
the position of each point in the 2× N cluster matrixM as:

x̄ =

∑N
i=1M1,i

N

ȳ =

∑N
i=1M2,i

N
(3)

The system was tested with multiple subjects. It detected
the feet of several subjects concurrently given that they were
sufficiently spaced apart. Fig. 4 shows two subjects’ feet
being detected individually. It was observed that feet on adja-
cent squares might be non-detectable as they merged into a
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FIGURE 6. A sequence of footprints superimposed in time. Both pre (top) and post (bottom) thresholding. Estimated center of the foot marked with a
cross.

larger blob. The copper sensing squares are spaced at 120 mm
intervals thus providing that the feet separation is to be greater
than around 200 mm to avoid the aliasing. This is because
the partial occlusion of feet at the very edge of adjacent
squares does not put them over the threshold. Initial testing,
as reported in [44], found that the position of the subject’s
foot in a static situation could be measured accurately.

When the target is barefoot, the separation between the
target’s foot and the copper-foil (d of Fig. 1 and Equation 1)
is the smallest. This results in a larger value of the capacitance
compared to the case when a subject is wearing a footwear.
Therefore, CapLoc enjoys the highest SNR when the subject
is barefoot which is quite common in a home setting. The
impact of footwear type on foot detection accuracy was thus
investigated. It was found that the type of footwear had quite
a minimal effect. Figure 5 demonstrates the cases where a
subject stands on the floor wearing socks and a pair sneakers
with thick soles. Whilst one can see the image for the foot in
the sneaker is slightly smaller (due to it being further from the
sensing squares), it is still detectable with its position being
relatively unaffected.

III. FOOTSTEP LOCALIZATION
A test floor was set up using eight sensing panels to create
1.2 m × 2.4 m area. Data from the system were sampled at
10 Hz making it possible to track a person moving around
the floor. Firstly, individual footprints were detected, and the
center of each footprint was stored. The footprint centers were
then clustered in time and space to determine if they come
from the same footstep. The path of the subject was then
estimated by taking the midpoints of the successive footsteps.
Figure 6 shows the detected footprints from a subject walking
on CapLoc (in 0.6 m × 4.8 m configuration).

Implementation of an accurate ground truth system to com-
pare the estimated path with the actual one is a challeng-
ing task. Several approaches were reported in the literature.
While motion capture can provide an extremely accurate
ground truth [14], it is not cost-effective. The use of the Xbox
Kinect was reported in the study [40]. A custom-designed
solution was reported in [31] whereby a hat on the sub-
ject’s head was connected via wires to pulleys with attached
encoders.

In this work, the HTC Vive [45] was used as a
ground truth system due to its low cost, availability, and

sufficient accuracy. It uses two base stations (called
Lighthouses) to track a small device called Tracker.

In pre-experimental testing, the accuracy of the systemwas
evaluated using an x-y CNC plotter with max deviation of
0.025 mm. Vive was found to be accurate within 10 mm.
The positions reported by the Vive are relative to the primary
lighthouse. To reconcile this coordinate system to that of
the floor, a calibration process needs to be undertaken. This
also means that positions of the lighthouses do not need to
be carefully measured thus eliminating a potential source of
error.

First, the ground truth system was calibrated using nine
points around the edge of the floor (Fig. 7). The calibration
points were used to align the Vive’s reference plane with the
floor as well as to align point CAL1 with the origin of the
floor. The calibration points were used to generate a trans-
formation matrix (R) that was then applied to all positions
measured using the Vive.

x′ = Rx, (4)

where [49]

R = Tv · Rz · Ry · Rx (5)

and

Tv =


1 0 0 −CAL1x
0 1 0 −CAL1y
0 0 1 −CAL1z
0 0 0 1

 (6)

Rz(γ ) =


cos γ − sin γ 0 0
sin γ cos γ 0 0
0 0 1 0
0 0 0 1

 (7)

Ry(β) =


cosβ 0 sinβ 0
0 1 0 0

− sinβ 0 cosβ 0
0 0 0 1

 (8)

Rx(α) =


1 0 0 0
0 cosα − sinα 0
0 sinα cosα 0
0 0 0 1

 (9)

Here x is a position from the Vive to be transformed, and x′ is
the transformed position relative to the floor. The values α, β,
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FIGURE 7. Layout of the floor and Vive calibration points.

and γ are the pitch, yaw, and roll between the Vive’s reference
plane and the floor. Figure 8 illustrates the aforementioned
process.

It was then further refined by employing the Iterative
Closest Point (ICP) algorithm [50] to generate a transforma-
tion matrix aiming to minimize the Euclidean error between
the measured and actual positions of all nine calibration
points. The combination of the two transformations was then
used to transform the position data from the Vive.

Literature reports [51]–[53] suggest that tracking could
be lost when a line of sight is absent between the light-
houses or between the tracker and the lighthouses. The tracker
was therefore attached to the top of the subject’s head (Fig. 9)
to maintain a constant line of sight with the two lighthouses
that were mounted at approximately 2 m above the ground,
one on each side of the testbed.

Thirty-nine different paths, split between three subjects -
two males (subjects 1 and 2) and one female (subject 3), were
walked across CapLoc with the ground truth of the subject’s
head being recorded by the Vive. Fig. 10 shows the footsteps
estimated by CapLoc and the position of the subject’s head
tracked by the Vive for 12 of the total 39 paths. It can be

seen that the footsteps very closely match the ground truth.
Localization errors were computed by considering the posi-
tion of the subject to be the midpoints between the successive
footprints and then comparing them to the relevant points of
the Vive’s reported path. Empirical Cumulative Distribution
Function (ECDF) for the 219 footsteps corresponding to all
39 trajectories is shown in Fig. 11.

Both U-shaped and diagonal trajectories were walked by
all three subjects, due to those being easily repeatable paths.
That was done to verify that the floor was able to locate
different subjects without the need for calibration in between.
Figure 12 shows two paths for each subject. Table 3 shows the
median and 90 percentile errors for each of the subjects.

Five of the paths were walked by subject 1 in a pair
of sneakers having a thick sole. Other than that, the three
subjects had similar footwear, considerably thinner than the
sneaker. The results are shown in Fig. 13 and Table 3. For
subject 1, the median and 90 percentile errors are slightly
worse for the thick-soled footwear as the measured capaci-
tance was lower (due to higher separation from copper-foil
plates, please see Section II for more details), and therefore it
was more affected by noise.

The results support the assertion that the floor can be used
for human tracking without any foreknowledge of the sub-
ject or environment. The only requirement being that the floor
must be vacant for several seconds after the initial powering
on to measure the background capacitance.

Potentially, the error could be further reduced by employ-
ing a more sophisticated path estimation algorithm. Also,
accurate tracking is complicated by the impossibility to
define the subject (person) as a single point object. The top
of the head is approximately in the center of the subject
when viewed from a top-down perspective. However, when
people walk, they tend to sway from side to side. This was
noticed to be even more prevalent when a subject walked
along pre-marked paths. Besides, the amount of the head
movements is normally somewhat higher than that of the
center of mass of the body, thus causing additional errors.
This can be seen in the paths and error statistics for Subject 2,
which are worse than those for the other two subjects. The
U-shaped path in particular shows this subjects’ propensity to
move their heads as they walk. The headmovements resulting
from the subject’s walking pattern may have as much or even
more effect compared to the thickness of the footwear. As can
be observed, the localization error for subject 2 with thinner
footwear is higher than that for subject 1 with thick shoes.

Tables 1 & 2 compare the localization accuracy of CapLoc
against the state-of-the-art floor-based and other DFL sys-
tems. As can be seen, the proposed system is more accu-
rate than other systems reported in the literature. CapLoc’s
accuracy is likely to be even higher than that which is being
reported if the ground truth of the foot could be more reliably
established. The problem with placing the tracker on the foot
is that it can lose line of sight with the light houses. In such
a scenario, the ground truth recording system loses cali-
bration (as discussed earlier), reporting incorrect positions.
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FIGURE 8. The process of aligning the Vive’s calibration points with the floor. The orange crosses represent the calibration points in the Vive’s frame of
reference, the blue circles in the floor’s frame of reference. (a): Translating the points so that the origins are aligned. (b): Rotating about the Z axis; (c):
Rotating about the Y axis; (d): rotating about the X axis; (e): the final outcome with the two sets of points aligned. Note that, the angles (especially α and
β) have been exaggerated for clarity. In reality, the translation and the rotation γ were usually enough for the ICP algorithm to align the points correctly.

FIGURE 9. The Vive tracker affixed atop a subject’s head.

Therefore, a practical compromise was made. It should be
noted that, if a person is not in contact with the floor, they are
not visible to CapLoc. However, in a real-life setting, people
can only enter and exit a room at defined points. They can
be tracked around the room and if they remove themselves
from contact with the floor (e.g. by sitting on a chair) they
can be assumed to be in that location until they are seen again
(i.e. they stand up from the chair).

IV. POSES CAPTURED BY CapLoc FOR FALL DETECTION
Fall is a major health risk for the elderly, negatively affect-
ing their health and quality of lives. It poses also signifi-
cant burden on the healthcare and elderly-care institutions.

For someone living alone, timely and accurate fall detection
is needed to initiate swift medical assistance.
Personal Alarm System (PAS) can be worn by an elderly

person. In case of any problems (e.g., a fall), it enables the
alarm activation by just pressing a button. Unfortunately,
if the victim loses consciousness or is in a confused or
panicked state, the button may not be pressed [54].

Wearable sensors, utilizing primarily accelerometers
(e.g., presented in [55]) have been proposed for automated
fall detection. However, they rely on the subject to wear
a sensor at all times. Such a wearable device can be for-
gotten or misplaced or get damaged. It also requires charg-
ing or battery replacement that again can be missed. There
may also be a reluctance from a person to wear the sensor.
Smartphone-based fall detectors (e.g., discussed in [56])
are also associated with similar issues. Camera- [57] and
sound- [58] based fall detection approaches are perceived
to be invasive to privacy. Wireless- [59] and IR- [60] based
systems rely on anomalous activity detection. They utilize
the signatures for a fall that are not immediately obvious
to the naked eye [61]. Large amounts of data are generally
required to train a model to detect falls. However, the falls
are rare events. Besides, it is very difficult to simulate them
with human participants. All of this makes it hard to collect
enough data to train a robust classifier for fall detection [62].

When using CapLoc, a simple and more naive algorithm
potentially could be used for fall detection. For example,
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FIGURE 10. Twelve paths walked by Subject 1 on CapLoc: crosses represent the estimated foot positions and the lines show the ground truth (Vive
tracker).

FIGURE 11. ECDF of localization error for 219 footsteps across
39 different paths. The median error was found to be 0.026 m and the
90 percentile error 0.066 m.

a sudden increase in the area of contact with the floor could
suggest that a person has gone from a standing to a prone posi-
tion. By combining it with pose capture and temporal changes
in the pose, it could be possible to detect an event such as

a fall. Rather than trying to detect a rare, anomalous event,
CapLoc can support a fall detection approach identifying the
immediate aftermath of the fall, i.e., the subject lying on the
floor.

A. LYING SUBJECT POSE CAPTURE
An investigation was undertaken to determine if different
poses can be observed by using CapLoc. A subject laid on
the floor in eight different poses, with the system output being
recorded. The following poses were tried (Fig. 14): A – the
subject was lying face up with the arms by the sides and legs
flat; B – the subject was in the same pose except with the
knees were in the air and the feet whilst still on the floor wre
close to the body; C – the subject was lying face down with
arms by the sides; D – the subject was lying face down with
arms stretched above the head; E – the subject was sitting
upright with the legs outstretched in front; F – the subject
was kneeling; G – the subject was crawling on the hands and
knees; H – the subject was lying in the fetal position. It can
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FIGURE 12. Paths walked by different subjects without the need for calibration in between.

TABLE 3. Comparison of path tracking error for different subjects.

FIGURE 13. Paths walked in thin (1) and thick-soled footwear (2).

be seen that the poses were captured reasonably distinctively
by the CapLoc.

This suggests that once sufficient data are available, not
only fall detection but also fall pose recognition could be
achieved while employing relevant classification models
(e.g. applying histogram distances [63]).

TABLE 4. Comparison of the area of different poses.

B. POSE AREA ESTIMATION
Parts of the foot detection algorithm can also be used to
estimate the contact area of a subject with the floor. Each
individual capacitance reading (represented as a single pixel)
is subject to background subtraction, cubic interpolation, and,
finally, binary thresholding as discussed before. Each pixel
then represents an area of the floor defined by the size of each
copper-foil sensor and the interpolation factor. The number of
pixels above the threshold then approximates the area of the
contact.

Each of the poses in Fig. 14 had their areas estimated
by the system to demonstrate the CapLoc potential for fall
detection. It can be seen from Table 4 that the poses of the
lying on the floor have much larger contact areas compared
to a footprint, thus supporting the suggestion that the floor
contact area could potentially be used for fall detection.

Certain poses (e.g., G) could be confused for multiple sets
of footprints. However, if fall detection is combined with
occupancy tracking, it could distinguish the fall from the case
of three people standing near each other. People only enter
and exit the room at defined points and hence they can be
tracked around the roomwith reasonable accuracy. Therefore,
if there is only one person in a room (or in a certain area
of it), and an image of a potentially dangerous pose arrives,
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FIGURE 14. A subject in a variety of poses upon the floor.

the system would be able to trigger the fall alarm. A body
on the floor will have a significantly larger estimated contact
area than a footprint regardless of the size of the body. An
abrupt increase in area suggests that a fall may have occurred.
Therefore, the difference in body size should not impact the
fall detection performance. Also, with large amount of data
collected for people of varying body size, sophisticated image
recognition techniques (e.g. a deep neural network classifier
[64]) could be used in the future to recognize a fall event
rather than just using the contact area.

V. CONCLUSION AND FUTURE WORK
The developed capacitive floor, CapLoc, can identify the
position of a subject’s feet and track a single individual
while walking upon it. The median and 90 percentile error
of CapLoc for a wide-range of trajectories were found to be
0.026 m and 0.066 m. The sample rate used by the prototype
hardware was at 10 Hz per individual copper square. A new
version of the hardwar e is currently undergoing develop-
ment. It will offer higher sensitivity and a much-improved
sample rate whilst still being compatible with the current
flooring tiles as well as signal and data processing techniques.
Further work will also help to reduce the stray capacitance
by potentially using shielded cabling and to improve the
background capacitance measurement.

The localization experiments were performed with
a single person on the floor. However, it was demonstrated
that the system was capable of detecting multiple

targets simultaneously. For ambient signal based DFL tech-
niques (e.g. wireless or IR), each subject adds interference
and lowers the SNR leading to poor performance. In con-
trast, subjects on CapLoc that are spatially separated do not
interfere with each other. Therefore, by dividing the floor into
sperate smaller areas, it is possible to track targets within
those spaces using the algorithm outlined in this paper. It can
be further improved by incorporating a particle filter or some
similar techniques. However, tracking multiple targets in a
crossover scenario, where targets come together and then
diverge, will require user identification. It was found that
CapLoc systematically overestimates the foot area. How-
ever, such overestimation occurs uniformly around the foot
perimeters. As such, it did not affect the position of the center
of the foot. Unfortunately, the overestimation phenomena
means that it would not be achievable at this stage to accu-
rately identify individuals based on their estimated footprint
area. However, it is possible to discern the different phases
of a subject’s footstep on CapLoc from the initial heel strike,
through the midstance to the toe-off. During this sequence of
events, the center of contact of the foot moves from the heel
to the toe. With the improved hardware, in combination with
other features (e.g., stride length and foot angle) future work
will also explore the identification of individuals using their
gait patterns. In order to achieve this, significant data needs
to be collected to train a machine learning algorithm [65].

Only flat footwear was employed during the
experimental investigations while showing good results.
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Future investigations will also include performance evalua-
tion of the proposed technique on a variety of footwear types
(e.g., footwear with raised heels).

Finally, poses of a subject lying on the floor subject can
be clearly captured for a variety of positions. Therefore,
the proposed technique has the potential to be applied to
develop an accurate yet noninvasive fall detection system.
Future work will involve collecting sufficient pose data from
multiple subjects of varying body size. These data can then
be used to train a classifier to detect poses and subsequently
identify the fall occurrence.
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