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Abstract— Visible light positioning (VLP) is a promising indoor
localization method as it provides high positioning accuracy
and allows for leveraging the existing lighting infrastructure.
Photodiode (PD)-based receiver is a commonly used tag for VLP.
However, a tag employing a single PD requires three or more
luminaires to be visible. This article presents a VLP system that
uses a custom-made tag utilizing multiple PDs. It applies received
signal strength (RSS)-based fingerprinting using a weighted k-
nearest neighbor (WkNN) algorithm for localization. Experimen-
tal results show that it is possible to localize using less than three
luminaires with high accuracy. The Manhattan and Matusita
distance metrics are found to provide lower localization accuracy
than the Euclidean metric for the WkNN algorithm. The creation
of a dense fingerprinting database through 2-D interpolation
is presented as a method to reduce the cost of time and
labor. The localization performance of the VLP system does not
degrade noticeably with the fabricated database. The localization
accuracy of the WkNN algorithm is shown to be better than that
of a multilayer perceptron (MLP)-based regressor. The developed
VLP system is also experimentally benchmarked against the HTC
Vive showing comparable performance.

Index Terms— Artificial neural network (ANN), indoor local-
ization, indoor positioning system (IPS), machine learning (ML),
multilayer perceptron (MLP), visible light positioning (VLP),
weighted k-nearest neighbors (WkNNs).

I. INTRODUCTION

GLOBAL positioning system (GPS) has been used in
many applications, such as localization, navigation,

tracking, mapping, and timing. Although GPS can be used
to locate a target outdoors, it is very difficult to do so if
the target is located indoors due to the inability of GPS
signals to penetrate through walls [1]. Accurate positioning of
a person or an object indoors can facilitate many applications,
such as navigation in large indoor environments such as
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airports or shopping malls [2]. Multiple technologies have
been proposed for indoor localization, such as wireless [3],
visible light [4], and ultrasound [5], to name a few. Wireless-
based technologies are vulnerable to multipath and interfer-
ence [6], while ultrasound comes with high installation costs
[7]. Recently, visible light positioning (VLP) has garnered the
interest of researchers due to the convenience of implementa-
tion using light-emitting diode (LED) luminaires. Visible light
signals do not pass through walls making them secure [8], and
visible light-based positioning systems can potentially offer
higher accuracy compared with other technologies [9].

Visible light characteristics that are commonly used for
VLP are received signal strength (RSS), time of arrival (TOA)
[10], Time Difference of Arrival (TDoA) [11], and Angle
of Arrival (AoA) [12]. RSS-based systems may produce low
accuracy due to sensitivity and tilt issues [13], while AoA-
based systems may provide comparatively higher accuracy but
are more complex [14]. TDoA-based systems can also achieve
high localization accuracy [11] but are complex and costly to
implement as they require synchronization between hardware
[15]. Therefore, the most popular VLP techniques use RSS
[16]. RSS values obtained from a light sensor, e.g., a photodi-
ode (PD), can be used to determine the distance between the
transmitter (i.e., the luminaire) and receiver/tag [17]. Based
on this ranging, techniques such as trilateration [18] can be
applied for localization. RSS from multiple luminaires can also
be used as features for fingerprinting-based localization [19].

A. Multiple Photodiode Systems

A single-PD-based VLP system requires at least three
luminaires for effective localization. However, that many
luminaires may not be visible to the PD in some real-
world environments. To overcome this problem, multiple-PD-
based VLP systems that can function with less than three
luminaires within the PDs’ field of view (FOV) have been
proposed [20]–[23]. Multiple-PD receivers can also be used to
mitigate the tilt issue [24] of single-PD receivers. The reported
VLP systems in the literature use three [11], [20], [22], [23],
[25] or more [4], [9], [26], [27] PDs.

The difference in angles and position of a multi PD receiver
design can be exploited to develop novel localization methods.
For example, RSS from multiple PDs, RSS ratio [23], [26],
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Fig. 1. Key concept of the proposed VLP system. (a) Extraction of RSS from one PD. This is performed for all four PDs. (b) Extracted RSS from the four
PDs can be considered a distinct feature for a location. Examples of two separate locations shown.

[27], and RSS difference [22] between the PDs can be used
to estimate the position of the receiver. Xie et al. [4] used the
linear independence of the multiple-PD planes, while Yasir
et al. [9] utilized the RSS and incidence angle. It should
be noted that single-PD systems that use a rotating receiver
[21], [28], [29] can also emulate multiple-PD-based systems.
Researchers have proposed a VLP system using a rotatable
single-PD receiver where the receiver takes the RSS at a single
location at different angles [24]. The authors further developed
this system by using the same positioning method but using a
receiver with three tilted PDs instead [25]. Table I summarizes
the reported works on multiple-PD systems available in the
literature. As can be observed, all implementations of the
reported multiple-PD-based VLP systems utilize modeling,
and there is a lack of literature on machine learning (ML)-
based multiple-PD systems. Therefore, in this work, we are
exploring a multiple-PD-based system that applies ML tech-
niques for localization.

B. Machine Learning for Localization

ML techniques have been widely investigated for wireless-
based indoor positioning [30]–[32]. However, it has not been
well utilized for VLP. While ML techniques, such as WkNN
[33] and artificial neural network (ANN) [34], have been
reported for VLP, they have not been utilized for multiple-
PD-based VLP systems.

Creating a fingerprint with an off-line database is a key step
of ML-based localization. Such localization methods consist
of two phases: offline and online [35]. In the off-line phase,
fingerprints or features of an environment are collected at the
target device (e.g., RSS) and are stored in a database. In the
online phase, the data obtained from the target in real-time are

then compared with the values stored in the database, and the
position of the device is estimated.

The research presented here extends the work reported in
[36] and offers the following original contributions.

1) Accurate VLP System Using Multiple PDs and ML: This
is the first reported work that implements a multiple-
PD-based VLP system employing fingerprinting and
ML algorithms for accurate localization. In contrast to
single-PD-based systems, the developed VLP system can
localize accurately when only two luminaires are visible.
Experimental results show that there is only minimal
degradation in localization accuracy when going from
four luminaires to two.

2) Impact of Distance Metric on the Localization Accuracy
of the Weighted K-Nearest Neighbor (WKNN) Regres-
sor: Two distance metrics, Manhattan and Matusita,
outperformed the common Euclidean metric in terms of
localization accuracy.

3) Reduced Fingerprinting Cost Through Data Fabrication:
Fingerprinting incurs a significant cost of time and
labor for off-line site surveying. Data fabrication through
2-D interpolation is shown to be an effective way of
constructing a dense fingerprint database from a sparse
one and thus reducing the cost of fingerprinting.

4) Comparison Between WkNN and Multilayer Perceptron
(MLP), Two ML Algorithms, With Respect to Localiza-
tion Accuracy: Experimental results show that, for the
setup utilized, WkNN outperforms MLP.

5) Benchmarking Against Commercial Tracking Solution:
Unfortunately, VLP systems reported in the literature
have not been experimentally benchmarked against
existing commercial products and are only com-
pared with other proposed techniques. In contrast,
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TABLE I

OVERVIEW OF WORKS ON MULTIPLE-PD VLP SYSTEMS

the performance of the developed VLP system is bench-
marked against a consumer product HTC Vive. The
localization accuracy of the proposed system is found
to be similar to that of the Vive.

The rest of this article is organized as follows. Section II
describes the hardware of the developed VLP system, the data
acquisition system, and the experimental setup. Section III
introduces the WkNN algorithm as a classifier for the VLP
system. Section IV discusses experimental results and findings
for the WkNN algorithm. It presents an ANN-based local-
ization algorithm and compares its positioning accuracy with
that of WkNN. Section V demonstrates how data fabrication
can reduce the cost of an off-line site survey. Section VI
benchmarks the localization performance of the proposed
system against the HTC Vive. Section VII concludes this
article with suggestions for future work.

II. SYSTEM OVERVIEW

The developed VLP system is based on frequency-division
multiplexing (FDM) with the demultiplexing done at the
receiver through a fast Fourier transform (FFT). Fig. 1 shows
a block diagram of the process where each of the four
LED luminaires transmits a discrete tone. At the multiple-PD
receiver board, the sum of the discrete tones is received, and
demultiplexing is performed to separate the discrete tones for
each luminaire. The FFT of the output of the PD-based light
sensors is computed, and the received power at each unique
frequency is used as a measure of RSS for the corresponding
luminaire. As can be observed, the RSS can be a distinctive
feature for a location.

A. Transmitter

Custom modulation boards were used to drive four
consumer-grade LED luminaires so that each luminaire is able
to transmit unmodulated sine waves at frequencies between 2
and 4 kHz [37]. For the experiments conducted, the luminaires

are set to unique frequencies of 2.5, 2.7, 3.2, and 3.5 kHz,
respectively.

B. Receiver

To receive the optical signals from the luminaires, a custom-
made receiver board using an ESP8266 microcontroller was
designed. The design of the receiver board is a triangular base
with three PDs tilted at an angle of 60◦ and a single horizontal
PD located in the middle, as shown in Fig. 2.

A two-stage op-amp circuit was designed to capture the
discrete tone signals from the luminaires through the reverse
bias current of a PD. The current is then converted into a
voltage signal and is read by an ADC, which has a sampling
rate of 20 kHz. The op-amp circuit is also able to filter out
the low-frequency (e.g., 100-Hz powerline flicker) and steady-
state dc signals generated by ambient light. The lower corner
and upper corner frequencies of the op-amp are designed to
be 550 and 4800 Hz, respectively. The receiver board also
includes an inertial measurement unit (IMU) to measure the
orientation of the receiver if needed.

C. Data Collection and Experimental Setup

The vertical distance between the receiver board and the
luminaires is 1600 mm. A 2-D CNC machine with dimensions
of 1200 × 1200 mm was utilized for taking measurements.
The position of the CNC machine is controlled by providing
the XY coordinate of the desired location. The CNC machine
has an accuracy of 0.025 mm, making it orders of magnitude
better than the expected localization accuracy of the developed
system. Therefore, it is appropriate for recording the ground
truth and RSS data in an accurate and automated manner.
The custom-made receiver board was mounted onto the CNC
machine to ensure that its orientation is kept constant through-
out the experiment. Fig. 3 shows the experimental setup with
the luminaires, CNC machine, and receiver board.
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Fig. 2. Details of the custom-designed multiphotodiode receiver board.

Fig. 3. Experimental setup. (a) Multiple-PD receiver mounted onto the CNC
machine. (b) VLP Fingerprinting testbed.

III. WEIGHTED K-NEAREST NEIGHBORS

Once the off-line database has been constructed, a match-
ing algorithm can be used to estimate the position of the

receiver during the online stage. The localization accuracy
of a fingerprint-based system is affected by the matching
algorithm used [17]. In this work, we implemented the WkNN
algorithm as a regressor as it has been shown to be quite
accurate for VLP systems [33]. The positioning accuracy of
the WkNN algorithm was also found to be superior (please
refer to Section IV for the comparative results) compared with
that of an MLP that is a class of ANN.

The WkNN algorithm computes the distances of the neigh-
bors and assigns weights to the distances such that the neigh-
bor with a smaller distance has a greater weighting compared
with the neighbor with a greater distance. Let the off-line
location be denoted as (xi , yi), while the online location is
denoted as (x live

j , y live
j ).

The distance di, j between (xi , yi) and (x live
j , y live

j ) is com-
puted using a distance metric with the Euclidean distance
being the most common. The k-nearest neighbors are chosen
such that they have the smallest distance and the largest
weighting. The estimated position of the receiver (x̃ j , ỹ j) is
computed as the weighted average of the location of the k-
nearest neighbors and is given by

x̃ j =
�k

b=1 w j,b × xb�k
b=1 w j,b

, ỹ j =
�k

b=1 w j,b × yb�k
b=1 w j,b

(1)

where (xb, yb) is the location of the bth neighbor from the k-
nearest neighbors and the weight w j,b is the reciprocal of the
distance d j,i [33]. The value of k needs to be chosen carefully.
If a small k is used, it will not fit the data well, while a large
k will lead to overfitting.

IV. EXPERIMENTAL RESULT AND DISCUSSION

One hundred sixty-nine equally spaced measurement loca-
tions were selected at 100-mm intervals within the 1200 ×
1200 mm space. At each location, the RSS at each PD for
each luminaire was measured resulting in 16 RSS recordings.
Thirty-two sets of such RSS readings were taken at each
location. Some of the locations are used to construct 32 sets
of off-line databases corresponding to a 200 mm × 200 mm
grid spacing, while the rest is used for the online phase and
validation. All results presented in the subsequent sections
are averaged over the data sets. A sparse fingerprint database
corresponding to a 400 mm × 400 mm grid spacing is also
constructed for comparison and data fabrication purposes(see
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Fig. 4. Location of LED luminaires and test points used. Note that the
off-line 400 × 400 locations are also used for fingerprint fabrication and the
calibration of the HTC Vive.

Section V). Fig. 4 shows all these details. The receiver
orientation is kept constant for all the experiments. The top
PD has all four luminaires within its FOV throughout the
experiments and provides the most reliable RSS feature and
the smallest localization error. Therefore, it is used to emulate
a single-PD system for comparison purposes. Two of the tilted
PDs have three luminaires within their FOV for at least half
the measurement locations, whereas the remainder PD has only
two luminaires within its FOV throughout the experiment. Ini-
tial investigations show that the optimum number of neighbors,
K , is either 3 or 4. While reporting the experimental results,
one of these values for K was used, depending on whichever
resulted in lower localization error. The denser 200 ×
200 fingerprint provides significantly higher localization accu-
racy compared with the sparse 400 × 400 fingerprints with
median errors of 3.78 and 25.48 mm, respectively. More details
of these preliminary findings can be found in [36].

A. Effects of Number of PDs and Luminaires

Fig. 5 shows the cumulative distribution function (CDF)
of the localization error of the multi-PD system for varying
number of luminaires. Using the RSS from more luminaires
improves the localization accuracy. The performance of the
system when only the RSS from top PD is used is also
provided. The RSS feature extracted from four PDs has more
information compared with the RSS feature recovered with one
PD (see Fig. 1 for an example). Therefore, a higher localization
accuracy can be achieved using four PDs compared with using
a single PD for the same number of luminaires. For the four-
PD case, the localization accuracy degrades significantly only

Fig. 5. Localization error for a four-PD array for a various number of
luminaires. CDF of a single-PD system with four luminaires is shown for
benchmarking. With four PDs, median and 90 percentile errors are 3.78 and
8.32 mm, respectively, with four luminaires, while, with two luminaires,
median and 90 percentile errors are 6.63 and 20.45 mm. Median and
90 percentile errors for single PD are 6.17 and 78.31 mm, respectively.

for the one luminaire scenario. In contrast, the performance of
the single-PD case degrades significantly when the number of
luminaires is less than 3. It can also be observed that higher
localization accuracy can be achieved when using the RSS at
four PDs from two luminaires compared with using RSS at a
single (top) PD from four luminaires.

B. Impact of Distance Metrics

As discussed in Section IV, the distance di, j between (xi , yi)
and (x live

j , y live
j ) is computed, and the weight of the WkNN

regressor is then estimated as the reciprocal of the distance.
While the Euclidean distance metric is most commonly used,
the literature [33] shows that the localization accuracy of a
VLP using WkNN depends on the distance metrics utilized.
Consequently, eight different distance metrics were explored
and used to compute the weights for the WkNN algorithm.
Table II shows the localization error for the various distance
metrics using four PDs and four luminaires. It can be observed
that the Euclidean distance is one of the better-performing met-
rics. However, the Manhattan and Matusita distances outper-
form the Euclidean distance for all scenarios. It is interesting
to observe that the Lorentzian distance metric performs very
accurately for 200 × 200 grid spacing but has low accuracy
for the larger 400 × 400 grid spacing. The metric, due to its
logarithmic nature, is more sensitive to smaller distances and
less for larger distances. Therefore, it performs well when the
fingerprint is dense (e.g., 200 × 200 database) with smaller
distances between the RSS histograms of the live location and
the potential neighbors. However, this advantage is nullified
for sparse fingerprint (e.g., 400 × 400) with comparatively
larger distances. In such a scenario, the Lorentzian distance
metrics are also prone to misidentify the neighbors (e.g., 20%
of the neighbors incorrectly identified compared with only 9%
for Euclidean) resulting in large localization errors.

C. Neural Network-Based Localization

ANN-based VLP systems that have been proposed in the
literature [34], [38]–[40] utilize feedforward neural networks
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TABLE II

LOCALIZATION ERROR FOR VARIOUS DISTANCE METRIC USING FOUR PDS AND FOUR LUMINAIRES (K = 4 FOR 200 × 200 AND K = 3 FOR 400 × 400)
WHERE PLIVE

n, j IS THE RSS AT ONLINE LOCATION (x j , y j ) AND Pn,i IS RSS AT OFF-LINE LOCATION (xi , yi ). N = 16 (NUMBER OF RSS READING

AT FOUR PD EACH FROM FOUR LUMINAIRES)

Fig. 6. Structure of the proposed MLP-based localization algorithm.

and backpropagation (BP) algorithms using one or two hidden
layers. We developed a localization algorithm based on the
MLP that is a class of feedforward ANN [41] and used it to
benchmark the performance of WkNN.

The MLP is composed of an input layer, a hidden layer, and
an output layer of which each layer consists of nodes that are

Fig. 7. Localization error for the WkNN and MLP algorithms for the dense
(200 × 200) and sparse (400 × 400) fingerprint databases.

fully connected to one another. The structure of the proposed
MLP-based algorithm is shown in Fig. 6 and can be expressed
by

Nout =
L�

i=1

wi

⎛
⎝ f

⎛
⎝

16�
j=1

w j Nin + b0 j

⎞
⎠

⎞
⎠ + b1i (2)
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Fig. 8. Mesh grid showing the RSS at the top PD, PD0, and one luminaire for different grid spacing and databases. (a) Real 400 mm × 400 mm. (b) Real
200 mm × 200 mm. (c) Fabricated 200 mm × 200 mm.

Fig. 9. Difference between the real and fabricated RSS for various luminaires
at the top PD. (a) RSS difference at luminaire 1. (b) RSS difference
at luminaire 2. (c) RSS difference at luminaire 3. (d) RSS difference at
luminaire 4.

where f, w, b, and L are the activation function, weights, bias,
and the number of nodes in the hidden layer, respectively. Nin

is an input vector with a dimension of 16, while Nout is the
output vector with dimension 2. The values were chosen based
on the number of input value (16 RSS values from four lumi-
naires and four PDs) and output value [estimated (x̃ j , ỹ j )]. The
MLP was trained with the 32 sets of RSS measurement data
taken at each test point. Increasing the number of hidden layers
and the number of nodes in an MLP increases complexity and
can lead to overfitting [39]. Therefore, one hidden layer was
chosen for this work. To determine the optimal number of
nodes for the hidden layer, the effects of the number of nodes
on the localization error were verified. It was found that the
optimal number of nodes was 10 and 19 for the 200 × 200
and 400 × 400 databases, respectively.

Fig. 7 shows the localization error for the two ML algo-
rithms for the two different databases. The WkNN algorithm

significantly outperforms the MLP for the 200 × 200 database
but has similar performance to the MLP for the 400 × 400
database. When moving to a denser fingerprint, the accuracy
improvement for the WkNN algorithm is greater than that
of MLP. This is likely due to the regular arrangement of
the additional datapoints being captured better by the WkNN
algorithm as it uses a distance-based classification stage for
neighbor identification leading to a strong relationship between
density and accuracy. This increased density is not as directly
incorporated into the MLP model as the additional datapoints
must be used to update the networks’ weights and biases
during training. While increasing the number of measurements
at each test point can potentially increase the performance of
the MLP algorithm, it may not be feasible due to the cost
of an off-line site survey in terms of labor and time and
computational complexity.

V. FINGERPRINT CONSTRUCTION WITH DATA

FABRICATION

The complexity and localization accuracy of a fingerprint-
based system are affected by the size of the database. While
fingerprint systems are easy to implement, for high localization
accuracy, a dense, large database is needed making them time-
consuming and labor-intensive. Data fabrication can be used
to construct a dense fingerprint database from a sparse one.
It has been shown to be quite effective for wireless-based
localization [42] and visible light [33]-based localization.
In this section, a simple and effective method of constructing
a large fingerprint database with a small number of off-line
measurements is presented. The proposed method uses a 2-D
bivariate spline (B-spline) that is an interpolation technique
of two variables [43]. The method is used to take the RSS
values of a sparse 2-D grid and interpolate them. Through
interpolation, RSS values at locations that are not directly on
the grid can be fabricated, thus increasing the density of the
grid.

Since a 1-D spline interpolation requires at least four points,
a 2-D interpolation requires at least a 4 × 4 grid. Interpolation
is only able to estimate values within the range of the data.
Therefore, the vertices of the desired grid must be included.
The points should be equally and widely distributed across the
experimental setup. For this experiment, the 16 points from the
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Fig. 10. Localization error using the Manhattan distance metric for two different scenarios. (a) Four PDs and four luminaires. (b) Four PDs and two
luminaires. “200 × 200 Real” and “400 × 400 Real” fingerprint are constructed from actual RSS measured at the corresponding off-line locations shown
in Fig. 4. “200 × 200 Fabricated” dense fingerprint constructed to emulate the “200 × 200 Real” fingerprint by interpolating the “400 × 400 Real” fingerprint.

Fig. 11. HTC Vive’s Tracker mounted on the tool of the CNC machine.

400 × 400 grid off-line points shown in Fig. 4 were chosen.
These points are then used to fabricate the 36 points from the
200 × 200 grid off-line points shown in Fig. 4.

Fig. 8 shows the mesh grid RSS for different scenarios.
Fig. 9 illustrates the difference in RSS between the fabricated
data and the real data for the horizontal PD for all four
luminaires. As we can observe, the fabricated RSS emulates
the real data reasonably accurately with a maximum difference
of approximately 10%. Therefore, it is expected that data fab-
rication will not cause significant degradation in localization
accuracy. This is supported in Fig. 10 that shows the CDF
of localization error using the Manhattan distance, the best
performing distance, for two scenarios. It can be observed that
the localization error with the 200 × 200 fabricated database
is slightly higher compared with that achieved from the
measured 200 × 200 real database. However, the localization
performance with the fabricated data is much better than that
achieved with the sparse 400 × 400 real database. Therefore,
data fabrication allows the utilization of a smaller fingerprint
database and, thereby, reduces the cost of labor and time of off-
line measurement. This makes the proposed fingerprint-based
approach less data-driven. A new fingerprint can be easily
constructed from a small number of measurements to respond
to any change in the environment or the hardware. Recent
advances in RSS-based VLP [44] can also be explored to make
the approach more robust. Table III shows the localization
error statistics for both Manhattan and Euclidean distances for

Fig. 12. Vive experimental setup with two lighthouses and the tracker on
the CNC machine.

the three different scenarios. It can be seen that the Manhattan
distance outperforms the Euclidean distance for both real and
fabricated data.

VI. BENCHMARKING VLP AGAINST HTC VIVE

The localization performance of the developed multi-PD
VLP system was benchmarked against a commercial solution,
the HTC Vive, which is a reliable motion capture technology
used for consumer virtual reality (VR) application. A Vive
tracker, an accessory with tracking functionality, was selected
as the target. Two HTC Vive base stations, also known as
lighthouses, transmit synchronized light sweeps for localizing
the tracker using the AoA technique [45]. While the system
can operate with one lighthouse, two synchronized lighthouses
achieve better accuracy [46]. It should be noted that the
tracker also fuses data from its IMU. The tracker is mounted
on the CNC’s tool (see Fig. 11) for moving it within the
1200 × 1200 mm test area. Fig. 12 shows the setup of
the experiment. The positional data are transferred from the
Bluetooth equipped tracker to a PC connected with a Vive
wireless dongle.
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TABLE III

LOCALIZATION ERROR FOR VARIOUS DISTANCE METRICS USING FOUR PDS AND FOUR LUMINAIRES (LED = 4)

Fig. 13. Illustration of Vive coordinates and world coordinates for two
different scenarios. (a) Before point mapping. (b) After point mapping.

Fig. 14. Localization error for the developed multi-PD system using four
PDs, four luminaires, and Manhattan distance and the HTC Vive.

The positional values given by the HTC Vive are based
on the system’s local coordinate system [refer to Fig. 13(a)],
where the origin is the center point of the Vive’s lighthouse.
Therefore, point mapping or coordinate transformation is
needed to be applied to convert the coordinates into our

defined world coordinate [see Fig. 13(b)]. The tracker is placed
at 16 known reference points (the same number of points
used for the RSS data fabrication) to configure the coordinate
transformation. These reference points are located at the 400 ×
400 grid off-line points shown in Fig. 4. Due to noises
and outliers in the data set, it is not ideal to determine the
spatial transformation matrices using only trigonometry rules.
We applied iterative closest point (ICP), a point set registration
technique that determines an unknown spatial transformation
to align two sets of points [47], and the 16 reference points in
our case. Although this technique is effective [48], it requires
the two sets to be relatively close to make sure that the correct
points are matched to its corresponding reference points reli-
ably. Therefore, a rough alignment is required preceding ICP,
which is achieved based on axis translation (to align the local
coordinate’s origin to the reference origin) and subsequent
rotation through the application of Euler’s rotation theorem
[49]. The ICP is performed with the 16 reference points to
compute the calibration transformation matrix.

The localization error of the developed multi-PD system and
the HTC Vive are compared in Fig. 14 by plotting the CDF of
the localization error. It can be seen that the performance of the
developed system is comparable to the Vive with slightly better
localization accuracy with actual data and marginally worse
with the fabricated data. However, it should be noted that,
in contrast to the Vive that utilizes IMU data and continuous
tracking, the developed VLP is currently set up as a “single-
shot” [50] system. Consequently, further improvement can
potentially be achieved by fusing the onboard IMU to track
transitions between test points.

VII. CONCLUSION

This article presents a visible light-based positioning
method using four PDs. The multiple-PD-based system has
higher localization accuracy and can function with less number
of visible luminaires compared with a single-PD-based system.
The localization error can be further reduced by selecting
either the Manhattan or Matusita distance metrics for the
WkNN algorithm. Data fabrication through simple 2-D inter-
polation is shown to be an effective way of reducing the cost
of time and labor of an off-line site survey. A median error
of 4.74 mm can be achieved for four luminaires, while a
median error of 9.87 mm can be achieved with two luminaires.
Among the two ML algorithms investigated, WkNN was found
to be more accurate than MLP for our experimental setup.
The developed VLP system was benchmarked against an HTC
Vive. The VLP’s performance was comparable to that of the
common commercial solution while producing similar error
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statistics with a lower number of small errors with a slightly
greater number of larger errors.

The developed multi-PD receiver could potentially perform
3-D positioning via a fingerprint- or model-based method.
For the fingerprint approach, it is difficult to acquire 3-D
off-line database. However, it may be possible to utilize 3-
D interpolation- or ML-based regression to fabricate a dense
3-D fingerprint from a set of RSS data collected at a few
different receiver heights. Model-based methods might be
preferred because they allow for changing receiver orientation
that is an issue with fingerprint techniques. Using just the
signals from multiple luminaires and PDs, it is possible to
determine the receiver’s 3-D position and orientation [51].
An IMU that is already available onboard the receiver (see
Fig. 2) can provide the receiver’s normal vector [9] and would
likely improve positioning accuracy although this has not
yet been explored in the literature. The major drawback of
model-based 3-D positioning with multiple PDs is that the
resulting expressions are complex and nonconvex and need to
be solved using iterative approaches not suited for embedded
applications. It should be noted that while 3-D positioning
has many applications, the addition of an extra dimension
comes at the cost of decreased accuracy [25], [26], and for an
application not requiring it, this tradeoff may not have enough
benefit.

Throughout the experiments, the orientation of the VLP
receiver was kept unchanged. While this is a realistic assump-
tion for robotic applications (a simple gimbal can achieve
this), the impact of orientation change needs to be explored.
The orientation of the receiver might not have been optimal
orientation as the luminaires were not within the FOV of the
all PDs for all locations. It may be possible to determine
the optimum orientation for a particular setup. In a real-
world environment, online locations would not always be on
a regular grid. Hence, random online points can be used to
test the performance in such a scenario. Future work could
also include implementing model-based localization using
the multi-PD receiver board. A comparative benchmarking
against existing VLP solutions has also been left for future
investigation. Data fabrication was achieved through the 2-
D interpolation technique. Investigation of other interpolation
and model-based data regeneration techniques have been left
for future research. Localization algorithms based on other ML
techniques can also be explored. Future works could include
using arbitrary test locations rather than evenly spaced points
as that practice has been reported to improve the localization
performance of NN [40]. The VLP system needs to be tested
for a larger experimental setup. The low localization error
of the developed VLP system also necessitates an extremely
accurate ground-truth recording procedure. These restrictions
had constrained the size of the experimental setup. The
localization algorithms were trained with a relatively small
number of data sets. They need to be trained and tested
with more extensive data sets and, thus, require a large
number of RSS recordings at each test location. Therefore,
the development of an accurate and automated ground-truth
recording system can be an interesting research topic for the
future.

REFERENCES

[1] F. Van Diggelen and P. Enge, “The world’s first GPS MOOC
and worldwide laboratory using smartphones,” in Proc. 28th Int.
Tech. Meeting Satell. Division Inst. Navigat. (ION GNSS), 2015,
pp. 361–369.

[2] INFSOFT. Indoor Navigation & Services in Airports. Accessed:
Oct. 10, 2019. [Online]. Available: https://www.infsoft.com/industries/
airports/features

[3] V. Bianchi, P. Ciampolini, and I. De Munari, “RSSI-based indoor
localization and identification for ZigBee wireless sensor networks in
smart homes,” IEEE Trans. Instrum. Meas., vol. 68, no. 2, pp. 566–575,
Feb. 2019, doi: 10.1109/TIM.2018.2851675.

[4] B. Xie et al., “LIPS: A light intensity-based positioning system for
indoor environments,” ACM Trans. Sensor Netw., vol. 12, no. 4,
pp. 1–27, Nov. 2016, doi: 10.1145/2953880.

[5] R. Carotenuto, M. Merenda, D. Iero, and F. G. D. Corte, “An indoor
ultrasonic system for autonomous 3-D positioning,” IEEE Trans.
Instrum. Meas., vol. 68, no. 7, pp. 2507–2518, Jul. 2019, doi:
10.1109/TIM.2018.2866358.

[6] J. Fang et al., “High-speed indoor navigation system based on visible
light and mobile phone,” IEEE Photon. J., vol. 9, no. 2, pp. 1–11,
Apr. 2017, doi: 10.1109/JPHOT.2017.2687947.

[7] J. Rabadan, V. Guerra, R. Rodríguez, J. Rufo, M. Luna-Rivera, and
R. Perez-Jimenez, “Hybrid visible light and ultrasound-based sensor for
distance estimation,” Sensors, vol. 17, no. 2, p. 330, Feb. 2017, doi:
10.3390/s17020330.

[8] L. Cheng, W. Viriyasitavat, M. Boban, and H.-M. Tsai, “Comparison
of radio frequency and visible light propagation channels for vehicular
communications,” IEEE Access, vol. 6, pp. 2634–2644, 2018, doi:
10.1109/ACCESS.2017.2784620.

[9] M. Yasir, S.-W. Ho, and B. N. Vellambi, “Indoor position tracking
using multiple optical receivers,” J. Lightw. Technol., vol. 34, no. 4,
pp. 1166–1176, Feb. 15, 2016, doi: 10.1109/JLT.2015.2507182.

[10] T. Akiyama, M. Sugimoto, and H. Hashizume, “Time-of-arrival-based
smartphone localization using visible light communication,” in Proc. Int.
Conf. Indoor Positioning Indoor Navigat. (IPIN), Sep. 2017, pp. 1–7,
doi: 10.1109/IPIN.2017.8115904.

[11] A. Naz, N. U. Hassan, M. A. Pasha, H. Asif, T. M. Jadoon, and
C. Yuen, “Single LED ceiling lamp based indoor positioning system,”
in Proc. IEEE 4th World Forum Internet Things (WF-IoT), Feb. 2018,
pp. 682–687, doi: 10.1109/WF-IoT.2018.8355186.

[12] A. Arafa, X. Jin, and R. Klukas, “Wireless indoor optical positioning
with a differential photosensor,” IEEE Photon. Technol. Lett., vol. 24,
no. 12, pp. 1027–1029, Jun. 15, 2012, doi: 10.1109/LPT.2012.2194140.

[13] S. Zhang, W.-D. Zhong, P. Du, and C. Chen, “Experimental demonstra-
tion of indoor sub-decimeter accuracy VLP system using differential
PDOA,” IEEE Photon. Technol. Lett., vol. 30, no. 19, pp. 1703–1706,
Oct. 1, 2018, doi: 10.1109/LPT.2018.2866402.

[14] H. Steendam, T. Q. Wang, and J. Armstrong, “Cramér-Rao
bound for AOA-based VLP with an aperture-based receiver,” in
Proc. IEEE Int. Conf. Commun. (ICC), May 2017, pp. 1–6, doi:
10.1109/ICC.2017.7996691.

[15] J. H. Y. Nah, R. Parthiban, and M. H. Jaward, “Visible light communi-
cations localization using TDOA-based coherent heterodyne detection,”
in Proc. IEEE 4th Int. Conf. Photon. (ICP), Oct. 2013, pp. 247–249,
doi: 10.1109/ICP.2013.6687128.

[16] Z. Yang, Z. Wang, J. Zhang, C. Huang, and Q. Zhang, “Wearables can
afford: Light-weight indoor positioning with visible light,” presented at
the 13th Annu. Int. Conf. Mobile Syst., Appl., Services, Florence, Italy,
2015.

[17] Y. Zhuang et al., “A survey of positioning systems using visible LED
lights,” IEEE Commun. Surveys Tuts., vol. 20, no. 3, pp. 1963–1988,
3rd Quart., 2018, doi: 10.1109/COMST.2018.2806558.

[18] Y. C. See, N. M. Noor, and C. T. Y. M, “Investigation of indoor
positioning system using visible light communication,” in Proc. IEEE
Region Conf. (TENCON), Nov. 2016, pp. 186–189, doi: 10.1109/TEN-
CON.2016.7847986.

[19] W. Liu, X. Fu, Z. Deng, L. Xu, and J. Jiao, “Smallest enclosing circle-
based fingerprint clustering and modified-WKNN matching algorithm
for indoor positioning,” in Proc. Int. Conf. Indoor Positioning Indoor
Navigat. (IPIN), Oct. 2016, pp. 1–6, doi: 10.1109/IPIN.2016.7743694.

[20] S.-H. Yang, E.-M. Jung, and S.-K. Han, “Indoor location estima-
tion based on LED visible light communication using multiple opti-
cal receivers,” IEEE Commun. Lett., vol. 17, no. 9, pp. 1834–1837,
Sep. 2013, doi: 10.1109/LCOMM.2013.070913.131120.

Authorized licensed use limited to: Massey University. Downloaded on March 21,2021 at 20:19:46 UTC from IEEE Xplore.  Restrictions apply. 

http://dx.doi.org/10.1109/TIM.2018.2851675
http://dx.doi.org/10.1145/2953880
http://dx.doi.org/10.1109/TIM.2018.2866358
http://dx.doi.org/10.1109/JPHOT.2017.2687947
http://dx.doi.org/10.3390/s17020330
http://dx.doi.org/10.1109/ACCESS.2017.2784620
http://dx.doi.org/10.1109/JLT.2015.2507182
http://dx.doi.org/10.1109/IPIN.2017.8115904
http://dx.doi.org/10.1109/WF-IoT.2018.8355186
http://dx.doi.org/10.1109/LPT.2012.2194140
http://dx.doi.org/10.1109/LPT.2018.2866402
http://dx.doi.org/10.1109/ICC.2017.7996691
http://dx.doi.org/10.1109/ICP.2013.6687128
http://dx.doi.org/10.1109/COMST.2018.2806558
http://dx.doi.org/10.1109/IPIN.2016.7743694
http://dx.doi.org/10.1109/LCOMM.2013.070913.131120


BAKAR et al.: ACCURATE VLP USING MULTIPLE-PD RECEIVER AND ML 7500812

[21] S.-H. Yang and S.-K. Han, “VLC based indoor positioning using single-
Tx and rotatable single-Rx,” in Proc. 12th Int. Conf. Opt. Internet
(COIN), Aug. 2014, pp. 1–2, doi: 10.1109/COIN.2014.6950557.

[22] W. Xu, J. Wang, H. Shen, H. Zhang, and X. You, “Indoor posi-
tioning for multiphotodiode device using visible-light communica-
tions,” IEEE Photon. J., vol. 8, no. 1, pp. 1–11, Feb. 2016, doi:
10.1109/JPHOT.2015.2513198.

[23] X. Yu, J. Wang, and H. Lu, “Single LED-based indoor positioning
system using multiple photodetectors,” IEEE Photon. J., vol. 10, no. 6,
pp. 1–8, Dec. 2018, doi: 10.1109/JPHOT.2018.2848947.

[24] E.-M. Jeong, S.-K. Han, S.-H. Yang, and H.-S. Kim, “Tilted receiver
angle error compensated indoor positioning system based on visible light
communication,” Electron. Lett., vol. 49, no. 14, pp. 890–892, Jul. 2013,
doi: 10.1049/el.2013.1368.

[25] S. H. Yang, H. S. Kim, Y. H. Son, and S. K. Han, “Three-dimensional
visible light indoor localization using AOA and RSS with multiple
optical receivers,” J. Lightw. Technol., vol. 32, no. 14, pp. 2480–2485,
Jul. 15, 2014.

[26] X. Yu, J. Wang, and H. Lu, “Indoor positioning system based on single
LED using symmetrical optical receiver,” in Proc. Asia Commun. Pho-
ton. Conf. (ACP), Oct. 2018, pp. 1–3, doi: 10.1109/ACP.2018.8596193.

[27] L. Wang and C. Guo, “Indoor visible light localization algorithm with
multi-directional PD array,” in Proc. IEEE Globecom Workshops (GC
Wkshps), Dec. 2017, pp. 1–6, doi: 10.1109/GLOCOMW.2017.8269149.

[28] M. Yasir, S.-W. Ho, and B. N. Vellambi, “Indoor positioning system
using visible light and accelerometer,” J. Lightw. Technol., vol. 32,
no. 19, pp. 3306–3316, Oct. 1, 2014, doi: 10.1109/JLT.2014.2344772.

[29] B. Xie, S. Gong, and G. Tan, “LiPro: Light-based indoor position-
ing with rotating handheld devices,” Wireless Netw., vol. 24, no. 1,
pp. 49–59, Jan. 2018, doi: 10.1007/s11276-016-1312-1.

[30] F. Zafari, A. Gkelias, and K. Leung, “A survey of indoor localization
systems and technologies,” 2017, arXiv:1709.01015. [Online]. Available:
http://arxiv.org/abs/1709.01015

[31] W. H. Ali, A. A. Kareem, and M. Jasim, “Survey on wireless indoor
positioning systems,” Cihan Univ.-Erbil Sci. J., vol. 3, no. 2, pp. 42–47,
Aug. 2019, doi: 10.24086/cuesj.v3n2y2019.pp42-47.

[32] J. Yoo, K. H. Johansson, and H. J. Kim, “Indoor localization without
a prior map by trajectory learning from crowdsourced measurements,”
IEEE Trans. Instrum. Meas., vol. 66, no. 11, pp. 2825–2835, Nov. 2017,
doi: 10.1109/TIM.2017.2729438.

[33] F. Alam, M. T. Chew, T. Wenge, and G. S. Gupta, “An accurate visible
light positioning system using regenerated fingerprint database based
on calibrated propagation model,” IEEE Trans. Instrum. Meas., vol. 68,
no. 8, pp. 2714–2723, Aug. 2019, doi: 10.1109/TIM.2018.2870263.

[34] C. Lin et al., “An indoor visible light positioning system using arti-
ficial neural network,” in Proc. Asia Commun. Photon. Conf. (ACP),
Oct. 2018, pp. 1–3, doi: 10.1109/ACP.2018.8596227.

[35] S. Alraih, A. Alhammadi, I. Shayea, and A. M. Al-Samman, “Improving
accuracy in indoor localization system using fingerprinting technique,”
in Proc. Int. Conf. Inf. Commun. Technol. Converg. (ICTC), Oct. 2017,
pp. 274–277, doi: 10.1109/ICTC.2017.8190985.

[36] A. Hasan, T. Glass, F. Alam, and M. Legg, “Fingerprint-based visible
light positioning using multiple photodiode receiver,” presented at the
IEEE Sensors Appl. Symp. (SAS), Kuala Lumpur, Malaysia, Mar. 2020.

[37] F. Alam, B. Parr, and S. Mander, “Visible light positioning based on
calibrated propagation model,” IEEE Sens. Lett., vol. 3, no. 2, pp. 1–4,
Feb. 2019, doi: 10.1109/LSENS.2018.2889270.

[38] I. Alonso-González, D. Sánchez-Rodríguez, C. Ley-Bosch, and
M. Quintana-Suárez, “Discrete indoor three-dimensional localization
system based on neural networks using visible light communication,”
Sensors, vol. 18, no. 4, p. 1040, Mar. 2018, doi: 10.3390/s18041040.

[39] H. Zhang et al., “High-precision indoor visible light positioning using
modified momentum back propagation neural network with sparse
training point,” Sensors, vol. 19, no. 10, p. 2324, May 2019, doi:
10.3390/s19102324.

[40] J. He et al., “Demonstration of high precision 3D indoor positioning
system based on two-layer ANN machine learning technique,” in Proc.
Opt. Fiber Commun. Conf. (OFC), Mar. 2019, pp. 1–3.

[41] H. Ramchoun, M. Amine, M. A. J. Idrissi, Y. Ghanou, and M. Ettaouil,
“Multilayer perceptron: Architecture optimization and training,” Int. J.
Interact. Multimedia Artif. Intell., vol. 4, pp. 26–30, Jan. 2016, doi:
10.9781/ijimai.2016.415.

[42] J. Racko, J. Machaj, and P. Brida, “Wi-Fi fingerprint radio map cre-
ation by using interpolation,” Procedia Eng., vol. 192, pp. 753–758,
Jan. 2017.

[43] Y. Mehari, “Easy way to find multivariate interpolation,” Int. J. Emerg.
Trends Sci. Technol., vol. 4, no. 5, pp. 5189–5193, May 2017, doi:
10.18535/ijetst/v4i5.11.

[44] N. Huang, C. Gong, J. Luo, and Z. Xu, “Design and demon-
stration of robust visible light positioning based on received sig-
nal strength,” J. Lightw. Technol., early access, Jun. 11, 2020, doi:
10.1109/JLT.2020.3001761.

[45] M. Borges, A. Symington, B. Coltin, T. Smith, and R. Ventura, “HTC
vive: Analysis and accuracy improvement,” in Proc. IEEE/RSJ Int. Conf.
Intell. Robots Syst. (IROS), Oct. 2018, pp. 2610–2615.

[46] W. Jansen, D. Laurijssen, W. Daems, and J. Steckel, “Automatic calibra-
tion of a six-degrees-of-freedom pose estimation system,” IEEE Sensors
J., vol. 19, no. 19, pp. 8824–8831, Oct. 2019.

[47] A. Myronenko and X. Song, “Point set registration: Coherent point drift,”
IEEE Trans. Pattern Anal. Mach. Intell., vol. 32, no. 12, pp. 2262–2275,
Dec. 2010, doi: 10.1109/TPAMI.2010.46.

[48] R. S. J. Estépar, A. Brun, and C.-F. Westin, “Robust generalized total
least squares iterative closest point registration,” in Medical Image Com-
puting and Computer-Assisted Intervention, C. Barillot, D. R. Haynor,
and P. Hellier, Eds. Berlin, Germany: Springer, 2004, pp. 234–241.

[49] J. Diebel, “Representing attitude: Euler angles, unit quaternions, and
rotation vectors,” Matrix, vol. 58, pp. 1–35, Jan. 2006.

[50] A. Popleteev, “Wi-Fi butterfly effect in indoor localization: The impact
of imprecise ground truth and small-scale fading,” in Proc. 14th Work-
shop Positioning, Navigat. Commun. (WPNC), Oct. 2017, pp. 1–5.

[51] S. Shen, S. Li, and H. Steendam, “Simultaneous position and orientation
estimation for visible light systems with multiple LEDs and multiple
PDs,” IEEE J. Sel. Areas Commun., vol. 38, no. 8, pp. 1866–1879,
Aug. 2020, doi: 10.1109/JSAC.2020.3000805.

Adli Hasan Abu Bakar received the B.E. degree
(Hons.) in electronic and computer engineering
from Massey University, Auckland, New Zealand,
in 2020, where he is currently pursuing the Ph.D.
degree.

His research interests include wood acoustics,
machine learning, and visible light positioning.

Tyrel Glass received the B.E. degree (Hons.) in
electronic and computer engineering from Massey
University, Auckland, New Zealand, in 2019, where
he is currently pursuing the Ph.D. degree.

His research interests include visible light posi-
tioning, machine learning, big data, and the Internet
of Things.

Hing Yan Tee received the B.E. degree (Hons.) in
mechatronics engineering from Massey University,
Albany, New Zealand, in 2020.

His research interests include robotics, machine
learning, and the Internet of Things (IoT).

Authorized licensed use limited to: Massey University. Downloaded on March 21,2021 at 20:19:46 UTC from IEEE Xplore.  Restrictions apply. 

http://dx.doi.org/10.1109/COIN.2014.6950557
http://dx.doi.org/10.1109/JPHOT.2015.2513198
http://dx.doi.org/10.1109/JPHOT.2018.2848947
http://dx.doi.org/10.1049/el.2013.1368
http://dx.doi.org/10.1109/ACP.2018.8596193
http://dx.doi.org/10.1109/GLOCOMW.2017.8269149
http://dx.doi.org/10.1109/JLT.2014.2344772
http://dx.doi.org/10.1007/s11276-016-1312-1
http://dx.doi.org/10.24086/cuesj.v3n2y2019.pp42-47
http://dx.doi.org/10.1109/TIM.2017.2729438
http://dx.doi.org/10.1109/TIM.2018.2870263
http://dx.doi.org/10.1109/ACP.2018.8596227
http://dx.doi.org/10.1109/ICTC.2017.8190985
http://dx.doi.org/10.1109/LSENS.2018.2889270
http://dx.doi.org/10.3390/s18041040
http://dx.doi.org/10.3390/s19102324
http://dx.doi.org/10.9781/ijimai.2016.415
http://dx.doi.org/10.18535/ijetst/v4i5.11
http://dx.doi.org/10.1109/JLT.2020.3001761
http://dx.doi.org/10.1109/TPAMI.2010.46
http://dx.doi.org/10.1109/JSAC.2020.3000805


7500812 IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, VOL. 70, 2021

Fakhrul Alam (Senior Member, IEEE) received
the B.Sc. degree (Hons.) in electrical and elec-
tronic engineering from the Bangladesh Univer-
sity of Engineering and Technology (BUET),
Dhaka, Bangladesh, in 1996, and M.S. and Ph.D.
degrees in electrical engineering from Virginia
Tech, Blacksburg, VA, USA, in 1999 and 2002,
respectively.

He is currently an Associate Professor with the
Department of Mechanical and Electrical Engi-
neering, School of Food & Advanced Technology,

Massey University, Auckland, New Zealand. His research interests include
indoor localization, 5G and visible light communication, the Internet of
Things (IoT), and wireless sensor networks.

Dr. Alam is also a member of the IEEE I&M Society and the Institution of
Engineering and Technology (IET).

Mathew Legg (Member, IEEE) received the B.Sc.,
M.Sc., and Ph.D. degrees in physics from The
University of Auckland, Auckland, New Zealand,
in 2003, 2007, and 2012, respectively.

He is currently a Senior Lecturer with the
Department of Mechanical and Electrical Engi-
neering, School of Food & Advanced Technology,
Massey University, Auckland. His research relates
to the development of acoustic/ultrasonic measure-
ment systems and techniques for acoustic imaging,
nondestructive testing, and remote sensing.

Authorized licensed use limited to: Massey University. Downloaded on March 21,2021 at 20:19:46 UTC from IEEE Xplore.  Restrictions apply. 



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Black & White)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 0
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments true
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
    /AdobeArabic-Bold
    /AdobeArabic-BoldItalic
    /AdobeArabic-Italic
    /AdobeArabic-Regular
    /AdobeHebrew-Bold
    /AdobeHebrew-BoldItalic
    /AdobeHebrew-Italic
    /AdobeHebrew-Regular
    /AdobeHeitiStd-Regular
    /AdobeMingStd-Light
    /AdobeMyungjoStd-Medium
    /AdobePiStd
    /AdobeSansMM
    /AdobeSerifMM
    /AdobeSongStd-Light
    /AdobeThai-Bold
    /AdobeThai-BoldItalic
    /AdobeThai-Italic
    /AdobeThai-Regular
    /ArborText
    /Arial-Black
    /Arial-BoldItalicMT
    /Arial-BoldMT
    /Arial-ItalicMT
    /ArialMT
    /BellGothicStd-Black
    /BellGothicStd-Bold
    /BellGothicStd-Light
    /ComicSansMS
    /ComicSansMS-Bold
    /Courier
    /Courier-Bold
    /Courier-BoldOblique
    /CourierNewPS-BoldItalicMT
    /CourierNewPS-BoldMT
    /CourierNewPS-ItalicMT
    /CourierNewPSMT
    /Courier-Oblique
    /CourierStd
    /CourierStd-Bold
    /CourierStd-BoldOblique
    /CourierStd-Oblique
    /EstrangeloEdessa
    /EuroSig
    /FranklinGothic-Medium
    /FranklinGothic-MediumItalic
    /Gautami
    /Georgia
    /Georgia-Bold
    /Georgia-BoldItalic
    /Georgia-Italic
    /Helvetica
    /Helvetica-Bold
    /Helvetica-BoldOblique
    /Helvetica-Oblique
    /Impact
    /KozGoPr6N-Medium
    /KozGoProVI-Medium
    /KozMinPr6N-Regular
    /KozMinProVI-Regular
    /Latha
    /LetterGothicStd
    /LetterGothicStd-Bold
    /LetterGothicStd-BoldSlanted
    /LetterGothicStd-Slanted
    /LucidaConsole
    /LucidaSans-Typewriter
    /LucidaSans-TypewriterBold
    /LucidaSansUnicode
    /Mangal-Regular
    /MicrosoftSansSerif
    /MinionPro-Bold
    /MinionPro-BoldIt
    /MinionPro-It
    /MinionPro-Regular
    /MinionPro-Semibold
    /MinionPro-SemiboldIt
    /MVBoli
    /MyriadPro-Black
    /MyriadPro-BlackIt
    /MyriadPro-Bold
    /MyriadPro-BoldIt
    /MyriadPro-It
    /MyriadPro-Light
    /MyriadPro-LightIt
    /MyriadPro-Regular
    /MyriadPro-Semibold
    /MyriadPro-SemiboldIt
    /PalatinoLinotype-Bold
    /PalatinoLinotype-BoldItalic
    /PalatinoLinotype-Italic
    /PalatinoLinotype-Roman
    /Raavi
    /Shruti
    /Sylfaen
    /Symbol
    /SymbolMT
    /Tahoma
    /Tahoma-Bold
    /Times-Bold
    /Times-BoldItalic
    /Times-Italic
    /TimesNewRomanPS-BoldItalicMT
    /TimesNewRomanPS-BoldMT
    /TimesNewRomanPS-ItalicMT
    /TimesNewRomanPSMT
    /Times-Roman
    /Trebuchet-BoldItalic
    /TrebuchetMS
    /TrebuchetMS-Bold
    /TrebuchetMS-Italic
    /Tunga-Regular
    /Verdana
    /Verdana-Bold
    /Verdana-BoldItalic
    /Verdana-Italic
    /Webdings
    /Wingdings-Regular
    /ZapfDingbats
    /ZWAdobeF
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 600
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 600
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 300
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 900
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.33333
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /Unknown

  /CreateJDFFile false
  /Description <<
    /ENU ()
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


