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Abstract— This article reports a novel visible light positioning
(VLP) system and the associated experimental results. The
developed VLP system is completely passive as it does not require
a tracked object to carry any active device or tag. At the same
time, it does not require any modification to the existing lighting
infrastructure. The positioning system, termed Watchers on the
Wall (WoW), localizes a target based on measuring the change it
creates in the received signal strength (RSS) of the ambient light
recorded at an array of light-sensors embedded in the wall. A pro-
totype system has been implemented and tested to investigate the
performance of the proposed approach with regard to localization
and tracking. The experimental results show that the median and
90-percentile localization errors of 7 and 21 cm, respectively, can
be achieved for a 2 m x 3.6 m testbed. The effect of various
parameters like the height of placement and the number of
light-sensors, as well as the size of the fingerprint database, has
also been studied. The impact of various distance metrics on
the localization performance of the weighted K-nearest neighbor
(WKNN) classifier has been investigated. It has been found
that two distance metrics outperform the commonly employed
Euclidean metric. The experimental results also demonstrated
that the developed system could track a mobile target along
multiple routes with a median error of 12 cm.

Index Terms— Device-free localization (DFL), indoor localiza-
tion, indoor positioning system, passive visible light positioning
(VLP), VLP, weighted K-nearest neighbor classifier (WKNN).

|. INTRODUCTION

NDOOR positioning has been a burgeoning area of research
over the past decades. In terms of outdoor positioning, GPS
[1] is the de facto solution, due to it being both ubiquitous
and free to use. However, it has limitations, especialy in
built-up areas or indoors [2]. The GPS signa is adversely
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impacted by multipath reflections and struggles to penetrate
walls. Furthermore, the offered accuracy of several meters [3]
is not good enough for indoor applications. For these reasons,
other methods have been proposed. They have been based
on the use of Radio Frequency Identification [4], Bluetooth
[5], Wi-F [6], ZigBee [7], Ultrawideband [8], Magnetic
Fingerprinting [9], and Ultrasonic [10] to mention the most
popular. While the mgjority of these represent an improvement
over GPS for indoor localization, they often do not provide
the desired levels of accuracy, reliability, or simplicity. With
light emitting diodes (LEDs) steadily replacing the traditional
lighting sources, a new method of positioning has come to the
fore-Visible Light Positioning (VLP) [11]. Visible light hasthe
benefit of being far less susceptible to multipath interference
and flat fading due to its vastly higher frequency than radio
frequency signals[12]. LED lighting can aso perform multiple
roles—illumination, communication, and positioning. Active
VLP has been well researched. It relies on a mobile object
having a receiver containing either a photodiode (PD) or an
image sensor [13]. There are several active VLP methods that
have been implemented on indoor testbeds, with the main
approaches being Received Signal Strength (RSS) Lateration
[14], [15], Angle of Arrival Angulation [16], and Fingerprint
Matching [17].

Passive positioning or Device-Free Localization (DFL) [18]
alowsfor object detection without the need to have any receiv-
ing device attached to the tracked object. Potential applications
of such localization systems could include location-based
services in smart buildings, business analytics for retail appli-
cations, emergency evacuations, accessibility aids for visually
impaired persons, and fall detection in rest homes. DFL
systems based on wireless technol ogies have been investigated
extensively in the last decade. The current wireless-based DFL
solutions using Commercial-Off-The-Shelf (COTS) equipment
require a significant number of wireless nodes while offering
a median accuracy of approximately 1 m [19]. Recent works
employing the customized hardware and the channel state
information metric have shown promising results with the
median localization error as low as 0.35 m in line of sight
human tracking scenarios [20], [21].

While DFL systems based on wireless technologies have
been widely reported in the literature, there are only a hand-
ful of existing works dedicated to passive VLP [22]-{30].
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However, just like its active counterpart, passive VLP can
potentially be significantly more accurate than the wireless
passive positioning techniques. Consequently, there is a need
to develop advanced passive VLP solutions.

Collocated LED luminaires and PDs have been applied to
passively detect humans in [22]. The light from the LED
luminaires was multiplexed using Time-Division Multiple-
Access to identify the source of incoming light at each PD.
The work primarily focused on investigating the ability to
detect whether a door was open or closed. The work was
further extended in [23] to track human movement and detect
room occupancy. In the research [24], the floor was inlaid
with 324 PDs, with five LED luminaires placed on the ceiling
above. That setup was then used to detect the position of
a human body and limbs from the shadows cast onto the
floor. The work was further extended in [25] using only 20
PDs, abeit with a much larger number of LED panels on
the ceiling. That simplified the infrastructure at the cost of a
dlight decrease of accuracy. Similarly, Zhang et al. [26] also
used a grid of PDs embedded in the floor. LED luminaires
on the ceiling cast shadows from test subjects onto the said
PDs. However, the article reported results that were mostly
based on simulation. The only experimental result reported
in the article was a single point-to-point LED to PD link to
gather parameters for a larger-scale simulation. In simulations,
the authors were able to achieve a median error of 8 cm
inan 8 m x 8 m x 4 m room with four LED luminaires
and PDs uniformly spaced at the distance of 0.5 m on the
floor. Zhang et al. [27] used a passive VLP approach for
mobile device input using one LED and two PDs to detect a
user’s finger. The application of LED improved the reliability
in the presence of changing ambient light. The CeilingSee
approach [28] employed reverse-biased LED luminaires as
PDs for occupancy sensing. However, the authors did not use
the system for positioning test subjects or objects. Therefore,
they did not report any results on the localization accuracy.
Hu et al. [29] proposed the use of ceiling mounted photode-
tectors for accurately sensing the indoor environment change.
While this technique can potentially be adopted for occupancy
inference and position estimation, no localization and tracking
algorithms were reported in the article. In addition, theoretical
development was validated with simulation study only, and
no practical implementation was done. Another group of
researchers reported a passive VLP system that utilized a
network of visible light communication (VLC) luminaires and
PD-based receivers on the ceiling [30]. The system measured
the impulse responses (IRs) between each transmitter—receiver
pair similar to the channel sounding approach [31]. The target
was localized based on the measured changes of the IRs. The
reported rms localization error was based on simulation only,
and no prototype development or physical system implemen-
tation was done. Table | summarizes the reported research in
the area of passive VLP.

This article focuses on achieving accurate positioning of an
object under ambient light conditions without the need for any
modification to the existing lighting infrastructure (unlike the
majority of VLP solutions). Table | frames the work presented
in this article with respect to the state of the art in the field.
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The work presented here extends the preliminary results
reported in [32] and makes the following original contribu-
tions.

1) Novel passive VLP system based on ambient light only:
This is the first implemented passive VLP system that
the authors are aware of that does not require any
modification to the lighting infrastructure.

2) Functional passive VLP system with the associated
experimental results: The developed system, termed
WoW (shorthand for Watchers on the Wall) requires
only cheap PD-based light-sensors embedded in a wall
to operate. The developed system was extensively tested
to study the impact of various factors on the localization
accuracy.

3) Moving target tracking: The ability of the developed
system to track a moving object was investigated for
severa routes. As far as the authors are aware, this is
the first work that reports the localization accuracy of
a passive VLP system while tracking a moving target
traversing multiple routes.

4) Impact of distance metric on the performance of the
Weighted K-Nearest Neighbor (WKNN) classifier: The
impact of various distance metrics on the localiza-
tion performance was investigated. It was found that
two distance metrics outperformed the commonly used
Euclidean metric. To the best of the authors' knowledge,
this is the first publication that explores the impact of
the distance metric on the performance of the WKNN
classifier for passive VLP.

The rest of this article is organized as follows. Section 1l
describes the hardware and data acquisition system of the
developed VLP system, introduces the key concept of using
RSS as a fingerprint with the aid of a simple proof of concept
system, and proposes utilizing the WKNN algorithm for
positioning. Section IV presents the localization performance
of the developed system. The section also reports the impact
of various parameters on the localization accuracy. Section V
concludes the article with suggestions for future work.

Il. SYSTEM DEVELOPMENT
A. Key Concept

In a room, there are generally multiple light sources. win-
dows, doors, and interior lights. The walls of the room are
often lightly tinted, thereby causing a portion of the light
to be reflected. A person moving around the room produces
several shadows of different intensities projected onto the floor
and walls. The major shadows are the results of blocking the
direct paths from ambient light sources. However, many other
shadows are generated due to multiple reflections and artificial
light sources. The shadows can be detected by light-sensors
placed around a room as a change in the observed ambient
light level, i.e., a change in RSS.

B. Hardware for RSS Data Acquisition

In order to explore the possibility of using the change
in RSS for positioning purposes, a smple proof of concept
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TABLE |
COMPARISON OF WOW WITH OTHER PASSIVEVLP SYSTEMS

Research Results Obtained Receiver Sensor M(?dlﬁed Lighting Tr‘ackmg Limitations
infrastructure moving target
Ibrahim ez. a/ | Primarily detected whether a PD colloFatéd with Yes No Does not track or localize target.
[22] door was open or closed. LED luminaires
0,
. 93.7% occupancy cognt PD collocated with Only works in controlled environment
EyeLight [23] | accuracy, 94 cm median - Yes No . .
L LED luminaires as sunlight saturates the receivers.
localization error.
. Mean angular accuracy of 10° Floor inlaid with Does not track or localize target.
LiSense [24] for the 5 main body joints PD Yes No Needs a large number of PDs
Mean angular accuracy of S .
StarLight [25] | 13.6° for the 5 main body f)};)or inlaid - with Yes No Does not track or localize target
joints
Zhang et. Median error of 8 cm Floor inlaid with Yes No L.ocahz:atlon results obtained via
al.[26] PD simulation only.
Position a finger ina 9 cm x 7 Two PD around a Does not track or localize a human
Okuli[27] cm grid with 0.7 cm median tablet No No target. Only positions a user’s finger
error while using a tablet.
CeilineSee Reverse biased
28] g Detected Room occupancy LED luminaires as Yes No Does not track or localize target.
PD.
Simulation results show the . Does not track or localize. Suggested
. PD embedded in . .
Hu et. al.[29] developed algorithm can sense the ceilin Not specified No that environment change can help
change in environment. & infer occupancy and position.
Majeed et.al. . PD collocated with Requires ﬁngerprmtmg. .Locah.zatlon
RMS error is 5 cm - Yes No results are obtained by simulation
[30] LED luminaires only
Wow Me(.han error of 7 cm for PD embedded Requires fingerprinting. Néeds to b.e
stationary and 13 cm for s No Yes further developed to work in changing
(proposed) . within walls. . .
moving target. ambient light.
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Fig. 1. Custom-designed light-sensor.

system was set up using | SL29023 [33] integrated digital light-
sensors (Fig. 1). The light-sensors comprised a PD, a trans-
impedance amplifier, and an anal og-to-digital converter (ADC)
located in the same package. Each light-sensor was connected
to a low-cost Wi-Fi microchip (ESP8266 [34]). The ambient
light produces a dc signal at the output of the trans-impedance
amplifier. The dc level is a measure of the RSS of the ambient
light. It is sampled by the embedded ADC and retrieved by
the microcontroller of the ESP8266. The latest 100 samples
are stored in the internal memory until they are retrieved over

Wi-Fi. The data can then be requested in 100-value packets
from a computer and saved to a nonvolatile memory.

C. Proof of Concept Setup

The sensors were placed on a board at a height of 1.05 m
from the floor level. A 3.4 m x 2.2 m-grid with 0.2-m squares
was marked out using masking tape and a laser straight edge.
The sensors were positioned along the side of the grid furthest
from the wall, with the PDs pointing back toward the wall. The
RSS data were collected at each grid intersection for a total
of 198 locations. Each measurement consisted of 100 RSS
readings over 10 s at each sensor. The layout of the proof of
concept system is shown in Fig. 2.

D. RSS as Fingerprint

The RSS can be used as a fingerprint to locate mobile
objects. This can be observed in Fig. 3 for the proof of
concept setup. The blue bars are the RSS at the seven light-
sensors when the test area is free from obstruction (i.e.,
moving or stationary target objects). The red and orange bars
present two cases when a person is standing in the front left
area (i.e., close to the first two sensors on the wall—1 and 2)
and then in the back right position (i.e., opposite to the last
two sensors—6 and 7). Naturally, greater reductions in the
RSS can be observed at the sensors that are closer to the test
subject. For example, when the test subject is in the front left
position, the RSS drop is more significant for sensors 1 and
2, while there are very little reductions for sensors 6 and 7.
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Fig. 2. Proof of concept system. (a) Actual setup. (b) Layout diagram.
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Fig. 3. Received power at each light-sensor for three scenarios. empty test
bed (first bar), test subject on the left-hand side close to the wall with the
sensors affixed (middle bar) and that on the right-hand side away from the
wall with sensors affixed (end bar) [32].

When the person is at the back right position, the opposite is
true—sensors 6 and 7 are affected more than sensors 1 and 2.

The measured RSS values at each light-sensor are shown
in Fig. 4. These plots show the change in the RSS with a test
subject (a person of 1.8-m height) standing at each individual
point on the grid. A very large dip can be seen on the top-left
edge of each plot where the test subject stood immediately in
front of the light-sensor causing a strong shadow. This shows
the possihility of taking the RSS value from the same location
on each plot to construct a fingerprint Identifier(ID) for that
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position. The proof of concept along with some preliminary
results using that simple setup were reported in [32].

E. WKNN Classifier for Localization Using RSS

There are many classifiers to choose from when it comes to
positioning that utilizes a fingerprint database. While classi-
fiers like Support Vector Machines [35] and Neural Networks
[36] have been extensively employed for indoor localization
using wireless technology, they have not been commonly
applied for VLP. The use of the WKNN [37] is another option
to classify the online readings while employing an offline
fingerprint database. The recently published research [17] has
shown that WKNN is well suited for the active VLP system
utilizing RSS. Therefore, for this work, the WKNN is applied
to classify live RSS readings using the fingerprint database.

Let there be N light-sensors in the localization system.
During the offline measurements, when the target is at a
location (X, V), the corresponding ID for that location based
on the RSS at the sensors can be defined as an N x 1 vector

o R (1)

Here, Ry refers to the RSS at the nth light-sensor (dc level
measured at the output of its trans-impedance amplifier) with
the target being at location i with the coordinates (x;,y;).
At the offline stage, RSS measurements are taken at al
the sensors for M predefined locations and a M x N RSS
fingerprint database is constructed. Now, the target can be
localized in the live phase using the WKNN classifier.

During the live stage, the RSS vector at N light-sensors for
atarget at the location (xj, yj) is given by

Ri = [ Ry, R

live __ live plive
Rj™= [Rl,J N

. Rlive ]T (2)

> N,J .
Here, Rl]"’e is the RSS at the nth sensor during the live stage.
The proximity of the live location to an offline location on
the fingerprint database can be determined by computing the
distance d; ; between the vectors R}/® and R; . By sorting the
distances in the ascending order, the “nearest neighbors’ to
the current live location in the offline fingerprint database are
identified. The WKNN algorithm estimates the location of the
target as the weighted average of the location of the first K-
nearest neighbors as

K
o Dke1 Wik X Xk

XJ K (3)
D k1 Wik

_ ZK: wj Kk X Yk

yj = St e = 4
D k1 Wik

Here, (Xjyj) is the estimated position of the target and (xk,
yk) Is the position of the kth neighbor. The weight wj k is
the reciprocal of the distance dj k, thus giving larger weights
to nearer neighbors. The value of K = 3 was empirically
chosen in the WKNN algorithm for the system, as it provided
a good balance for optimizing both the median and maximum
localization errors.
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Fig. 4. RSS fingerprint at each light-sensor for the proof of concept setup. The XY plane represents the floor (units in m) [32].

Fig. 5. Experimenta setup showing the wall mounted light-sensors and the
test space.

I1l. LOCALIZATION PERFORMANCE

This section investigates the localization performance of the
system and reports the impact of various parameters on the
localization accuracy.

A. Experimental Setup

The initial proof of concept setup described in Section I1-C
was found to have large positioning errors at the extremities
of the test space. A dightly modified experimental setup was
therefore used. The room was set up with 14 light-sensors
(please see Section I1-B for the description of the hardware).
It was decided to place the sensors on two opposing walls (as
opposed to only one wall described in the proof of concept
setup). Also, the spacing of the light-sensors increased from

0.3 m (of the proof of concept setup) to an interval of 0.6 m.
This was done to ensure that there were enough sensors near
the ends of the test space. The physical setup can be seen
in Fig. 5. Seven sensors were placed along each wall giving
in total 14 sensing nodes [N = 14 in (1) and (2)]. A grid
of 3.6 m x 2 m dimension with 0.2-m squares was marked
out with the sensors being 0.4 m back from the grid on each
side and in line with the end of the grid at both the ends of
the experimental space. The width of the space was, therefore,
2.8 m and the length 3.6 m (however, with no walls across
the ends). Data were collected at each grid intersection for a
total of 209 locations using the acquisition method described
in Section I1-B. The data were split into two parts: 1) offline
fingerprint database and 2) online RSS measurements.

All the experiments were conducted at night when the
ambient light could be controlled. Multiple data sets were
collected for the entire test space, as shown in Fig. 6. In each
case, the data were collected starting at the first position
located at the corner of the grid closest to light-sensor 7
(marked as LS7 in Fig. 6). A test subject then stood at each
point on the grid in sequence while the reading was taken.
Each reading consisted of taking measurements from each
sensor simultaneously over a period of 5 s with the data being
sampled 10 times per second, giving an array of 50 samples
per sensor per reading. The readings were taken starting at
(0, 0) and proceeding in the x-direction, i.e,, (0, 0) to (1, 0),
..., to (19, 0) before starting the readings in the next row.
Each reading was taken for a 1.8-m tall human subject facing
the wall, i.e., the line of the subject’s shoulders was parallel
to the wall. Readings were also taken with no test subjects
being present (i.e., background reading representing effectively
an empty room). Background readings were taken before and
after each data set to verify that the ambient light level stayed
constant.
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Fig. 6. Experimenta layout showing the location of the light-sensors and measurement locations for three different fingerprint databases. (a) Measurement
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Fig. 7. ECDF of the localization error for three fingerprint database sizes.

TABLE Il
MEDIAN AND 90-PERCENTILE ERRORS FOR DIFFERENT DATABASE SIZES

Error in cm
Database 1 Database 2 Database 3
Median | 90-perc. |Median| 90-perc. | Median | 90-perc.
8 26 13 31 53 93

B. Impact of Fingerprint Database Size

Table Il shows the median and 90-percentile localization
errors for the three fingerprint databases of different sizes.
Offline measurement locations can be seen in Fig. 6. The
empirical cumulative distribution function (ECDF) of the
localization error is shown in Fig. 7. It can be observed that
there is a clear tradeoff between the localization accuracy and
the size or resolution of the grid. The localization accuracy
degrades as the fingerprint database becomes smaller with a
sparser grid. The degradation of accuracy in going from Data-
base 1 (111 offline measurements, M = 111) to Database 2
(60 offline measurements, M = 60) is relatively small. Also,
for Database 3, with only 12 offline measurements, the 90-
percentile localization error (93 cm) is still less than 1 m,
thus making the WoW more accurate than many state-of-the-
art wireless DFL systems [19].
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Fig. 8. ECDF of the localization error for three sensor heights.

It should be noted that the selection of the database is not
optimized. The optimum fingerprint locations are dependent on
many parameters with some being dynamic and also varying
with the site. The offline measurement locations optimized for
one test environment may not be ideal for another situation.
Therefore, simple regular patterns for offline locations were
utilized. The presented localization results could potentially
be improved by using more favorable fingerprint databases
found through the trial and error of various offline location
sets. However, this can lead to an over-trained system. Besides,
this may not be an objective representation of a real-world
scenario, where it is not aways feasible to optimize the
location of the offline measurement or fingerprint locations.

C. Impact of Sensor Placement Height

Fig. 8 shows the impact on the localization accuracy of the
sensor placement height on the wall. Three different heights
were investigated with the light-sensors set at heights of 0.75,
1.2, and 1.45 m from the floor level. It can be observed that the
height of the sensor placement does not have any noticeable
impact on the localization accuracy of the WoW. Thus, the
experimental results shown for the rest of this article are for
the sensor placement height of 1.45 m.
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TABLE 111
DEFINITION OF DISTANCE METRICS
Distance Metric Definition
Euclidean dj; =
N
Manhattan di; = ZlRﬁ’]’e — le
n=1
N .
le_e —R..
Canberra dj,i = %
i |RI% + Ry
TABLE IV
LOCALIZATION ERRORS FOR VARIOUS DISTANCE METRICS
Error in cm (Database 1)
Euclidean Manhattan Canberra
Median| 90-perc. |Median| 90-perc. | Median | 90-perc.
8 26 7 21 7 21
1 Lhidd T
----- Euclidean
—Manhattan
0.8F —=--Canberra |-
0.6 - b
[T
[m)
O
|
0.4 g
0.2+ 3
o " L L Il 1
0 10 20 30 40 50 60

Error (cm)

Fig. 9. ECDF of the localization error for various distance metrics.

D. Impact of Distance Metric

Euclidean distance is commonly utilized for identifying the
nearest neighbors and computing the weight of the WKNN
algorithm [37]. However, severa alternative distance metrics
are known from the literature [38]. A recent work on active
VLP [17] has shown that the selection of the distance metrics
can have an impact on the localization accuracy of the WKNN
algorithm. Consequently, the effect of distance metrics on the
accuracy of the VLP system was investigated. The distance
metrics are defined in Table Il1. The localization results for
Database 1 are shown in Fig. 9 and Table V. It can be observed
that the Euclidean distance is not the most accurate metric.
Two other distance metrics (Manhattan and Canberra) produce
lower localization errors. Localization results for Database
2 and Database 3 show similar trend.
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Fig. 10. Experimenta layout showing the location of the light-sensors for
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Fig. 11. ECDF of localization error for various number of light-sensors.

E. Impact of the Number of Sensors

The impact of the number of sensors on the localization
accuracy of the WoW was also investigated. Fig. 10 shows
the locations of the sensor nodes for these experiments.
Fig. 11 and Table V show the localization performance for
various number of sensors. As expected, the localization
accuracy degraded when the number of deployed nodes was
reduced. However, the 90-percentile error was below 50 cm,
even with only four sensors being employed.

F. Tracking a Mobile Target

In order to test how the developed system tracks a moving
target, multiple paths were followed by the test subject.
The target walked along a marked path at a constant speed
of 0.2 m/s. The steps were synchronized to a metronome to
ensure that the distance covered by each step and the walk-
ing speed remained constant. The deliberate walking speed
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versus estimated route-Path 2. (d) ECDF of the localization error-Path 2. (e) Actua versus estimated route-Path 3. (f) ECDF of the localization error-Path 3.

allowed the ground truth (the actual location of the target) to
be accurately estimated. Each path was recorded over a 90-s
period. Three different routes were employed to investigate
the capability of the WoW in tracking a moving target. The
results are shown in Fig. 12 and Table VI. It can be observed
that the positioning error levels are similar for al three paths.
In addition, the Euclidean distance performed worse among

the three distances. The performances for the Canberra and
Manhattan distances were nearly identical, and conseguently
only the results obtained for the Manhattan distance are shown
against those of the Euclidean distance. When the subject
walked around, the orientation of the subject varied, leading
to changes in the size of the shadow. The fingerprinting was
performed with the subject in a single orientation (facing one
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TABLE V
LOCALIZATION ERRORS FOR DIFFERENT NUMBER OF L IGHT-SENSORS

Error in cm (Sensor height 1.45 m, Database 1), Manhattan Distance
14 sensors 8 sensors 6 sensors 4 sensors (middle) | 4 sensors(end)
Median| 90-perc. [Median|90-perc. | Median | 90-perc. | Median | 90-perc. | Median [90-perc|
7 21 11 38 14.5 42 19 41 16 47
TABLE VI
LOCALIZATION ERRORS FOR VARIOUS TARGET TRAJECTORIES
Error in cm
Path 1 Path 2 Path 3
Euclidean Manhattan Euclidean Manhattan Euclidean Manhattan
Median| 90-perc. |Median| 90-perc. |Median| 90-perc. [Median| 90-perc. [Median| 90-perc. [Median| 90-perc.
16 29 13 23 15 27 13 23 13 23 12 21

of the walls). Larger errors were observed when the sub-
ject was facing significantly different directions compared
to those observed when the fingerprints were taken. This
is more noticeable in Fig. 12(a). The positioning error is
smaller on the left and right sides. Here, the test subject
walked toward or away from the sensors with the body
orientation being similar to that observed during the fin-
gerprinting. Whereas for the top and bottom parts of the
trajectory, the positioning error is more pronounced. For these
trajectories, the orientation of the test subject is £90° turned
compared to that observed during the fingerprinting.

The sampling rate of the VLP system is 10 Hz, which is
the maximum sampling frequency the custom-designed light-
sensors can handle at the 16-bit resolution. The conducted
experiments showed that the system could cope with a faster
walking speed of up to 0.8 m/s. However, it was difficult to
maintain a constant speed and achieve an accurate recording of
the ground truth. Also, if the resolution is reduced, the sample
rate of the current hardware can be increased allowing to
track targets that are moving even faster. However, the loss
of resolution would lead to a coarser estimation of the RSS
and could potentially lower the localization accuracy. In future
work, the hardware design may need to be improved to
increase the sampling rate without sacrificing the resolution
in order to track faster targets.

IV. CONCLUSION

This article presents the development and implementation
of a passive visible light-based indoor localization system that
employs cost-effective components. The system was able to
position a target with a median error of 7 cm in station-
ary and 12 cm in mobile scenarios using 14 wall-mounted
light-sensors. The VLP system performed effectively using
the WKNN classifier and a fingerprint database consisting
of 60 offline measurements within a 2 m x 3.6 m testbed.
Weights computed using either the Manhattan or Canberradis-
tance provided better positioning accuracy than the traditional
Euclidean distance for the WKNN classifier. The placement of
the light-sensors within a range between 0.75 and 1.45 m of
height did not show any noticeable impact on the localization
accuracy. Therefore, a sensor placement height of 1.45 m
is preferable to reduce the possibility of occlusion resulting

from furniture or other paraphernalia. The localization accu-
racy degraded once the number of light-sensors was reduced.
However, even with only four wall-mounted sensors, it was
possible to attain a median positioning accuracy of 16 cm for
a stationary target.

Further work will expand the test to a full room-scale with
the light-sensors embedded in all the room walls. In a larger
room, enough shadows may not be cast by the target on the
walls. In such a scenario, additional light-sensors may need to
be embedded in the ceiling and the floor, in particular, in the
middle of the room.

The experiments were undertaken at night. Therefore,
changes in the level of ambient light were not investigated.
The future work will study the quantification and mitigation
of the impact of changing the ambient light. Ambient light is
measured as a dc signal at the output of the light-sensors. The
proposed VLP system infers the location through monitoring
the change a target causes to the dc levels at various light-
sensors. Therefore, a change in the ambient light level could
affect the localization accuracy of the proposed system. This
can potentially be mitigated by using VL C-enabled luminaires
that transmit modulated light. Under such circumstances, the
sensors will monitor the RSS at a specific set of frequencies
rather than the dc levels. If the ambient light level changes,
the RSS at the modulating frequencies will not change. The
change in the RSS will be solely due to the occlusion, e.g.,
the presence of atarget. Therefore, aslong as the ambient light
does not saturate the light-sensors, the accuracy of suchaVLP
system would not depend on variations in the ambient light.
Another potential way to mitigate this could be to employ
two separate RSS metrics measuring the long-term and short-
term levels of the ambient light. A similar concept has been
applied with RSS histograms for wireless DFL to offset the
fluctuations of RSS occurring from the dynamic nature of the
wireless channel [39].

The developed system was tested for a single target at a
time, and as such, further investigation is planned to track
multiple objects. Since generating the fingerprint database is
a very time-consuming process, future research will look at
the modeling of the RSS data, and their generation from a
few strategically selected calibration points. Utilizing other
types of classifiers (e.g., Neural Networks and Support Vector
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Machines) and comparing their performance with WKNN will
be another direction for future research. Finally, the effect of
the color of the target’s clothing on the system performance
was also left for future investigation.
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